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Chapter 1: Introduction

Q1.1 What is the primary purpose of standardisation in video compression? List two
other advantages of standardisation.

Outline solution

• Standards are essential for interoperability, enabling material from different sources
to be processed and transmitted over a wide range of networks or stored on a wide
range of devices.

• This interoperability underpins an enormous market for video equipment, which can
exploit the advantages of volume manufacturing, reducing equipment and product
costs while also providing the widest possible range of services for users.

——oooo——

Q1.2 Using the example of a DVB-T2 terrestrial broadcast system transmitting HDTV
video content to the home, explain why digital video compression is needed.

Outline solution

• The basic bit rate of an 8 bit HDTV 1080i30 video, without chrominance subsam-
pling, is approximately 1.5Gbps whereas the typical bandwidth of a UK DVB-T2 link
is 40Mbps, currently shared between 4 TV programmes. Chrominance subsampling
using a 4:2:0 format will reduce the required bit rate by a factor of 2, but even then
a compression ratio of 75:1 is needed.

——oooo——
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2 TUTORIAL PROBLEMS

Q1.3 Consider the case of 4K UHDTV, with the original video in 4:2:2 (a luma signal
of 3840×2160 and 2 chroma signals of 1920×2160) format at 10 bits and a frame rate of
50fps. Calculate the compression ratio if this video is to be transmitted over a DVB-T2
link with an average bandwidth of 15Mb/s.

Outline solution

• The 4:2:2 colour subsampling method has, on average, the equivalent of two 10 bit
samples for each pixel (see Chapter 4). Thus, in its uncompressed form the bit rate
is calculated as follows:

R = 3840(H)× 2160(V)× 2(samples/pixel)× 10(bits)× 50(fps) = 8.2944× 109 b/s

• Assuming this is transmitted over a DVB-T2 link at 15 Mbps then the compression
ratio required would be 553:1. i.e.

CR =
8294400000

15000000
≈ 553

——oooo——



TUTORIAL PROBLEMS 3

Chapter 2: The human visual system

Q2.1 Assuming that the field of view within the fovea is 2 degrees, compute the number
of pixels that fall horizontally within the foveated visual field. Assume a 1m wide screen
with 1920 horizontal pixels viewed at a distance of 3H.

Outline solution

• Assuming a 16:9 screen aspect ratio, the height H of the screen is 9/16m.

• The viewing distance of 3H = 1.6875m.

• The amount of the screen foveated at 1.6875m is x = 2×1.6875×tan (1o) = 0.0589m

• The number of horizontal pixels that fall within the foveated field of view is thus
1920× 0.0589 = 113

——oooo——

Q2.3 Calculate the normalised contrast sensitivity of the human visual system for a
luminance-only stimulus at a spatial frequency of 10 cycles per degree.

Outline solution

• An approximation for the normalised CSF is given in equation 2.6:

C (f) = 2.6 (0.0192 + 0.114f) e−(0.114f)1.1

• Evaluating this equation at a frequency of 10 cycles per degree, the normalised CSF
is 0.9495

——oooo——



4 TUTORIAL PROBLEMS

Q2.2 The following table lists a number of important features of the human visual
system (HVS). Complete the table by describing the influence each feature has on the
design of a digital video compression system.

Outline solution

HVS characteristic Implication for compression
HVS more sensitive to high contrast
image regions than low contrast regions.

Edges should be preserved. Artificial edge
artefacts introduced by quantisation are
very noticeable and should be avoided.
Spatial (contrast) masking of quantisation
noise can be exploited in textured regions.

HVS is more sensitive to luminance than
chrominance information.

Visual signal representations can be based
on colour spaces that split luminance and
chrominance. Chrominance channels can
be allocated lower bandwidth than the
luminance channel.

HVS is more sensitive to lower spatial
frequencies than higher spatial
frequencies.

Frequencies beyond the upper range need
not be processed. Higher frequencies can
be coded more coarsely with implications
for quantisation. The lower frequency
luminance roll-off is not normally
exploited.

In order to achieve a smooth appearance
of motion, the HVS must be presented
with image frames above a certain
minimum rate (and this rate depends on
ambient light levels).

Frame rates for acquisition and display
should normally be at least 50 Hz. Due to
flicker effects, higher frame refresh rates
are required for larger screens and closer
viewing.

HVS responses vary from individual to
individual.

Subjective quality assessment experiments
should be based on results from a large
number of subjects (typically > 20).

——oooo——
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Chapter 3: Discrete time analysis for images and video

Q3.1 Plot the sinusoidal signal x(t) = cos (20πt). Compute the frequency spectrum of
this sinusoid and plot its magnitude spectrum.

Outline solution

• x(t) = cos (20πt) represents a time domain sinusoidal signal at a frequency of f0 =
10Hz. Thus the period T0 = 0.1s and ω0 = 20π.

• We can compute the spectral components using the Fourier series representation,
thus:

Ck =
1

T0

ˆ

T

x (t) e−jω0ktdt

=
1

T0

ˆ

T

cos (ω0t) e
−jω0ktdt

=
1

2T0

ˆ

T

(
ejω0kt + e−jω0kt

)
e−jω0ktdt

=
1

2T0

ˆ

T

ejω0t(1−k)dt+
1

2T0

ˆ

T

e−jω0t(1+k)dt

• The first integral term is equal to zero except when k=1. Thus C1 = 0.5. Similarly,
the second integral term is zero except when k=-1, giving C−1 = 0.5.

• Hence the spectrum for this function is:

f(Hz)

X(f)

0.5

10-10

——oooo——

Q3.2 Assume that the sinusoidal signal in Q3.1 is sampled with T = 0.1s. Sketch the
magnitude spectrum of the sampled signal and comment on any aliasing issues.
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Outline solution

• Using the DFT we can compute the spectral characteristics of the sampled signal.
Because the signal is sampled at a frequency of 10Hz (the same as its fundamental
frequency) there is only one sample per cycle. Aliasing will thus occur where the
primary alias (i.e. the reconstructed signal after low pass filtering) will be at DC.

• Using the DFT:

X (k) =
N−1∑
n=0

x [n] e−j
2π
N
kn

• Since N=1:

X (0) =
0∑

n=0

x [0] e−j
2π
1

0 = 1.e−j
2π
1

0 = 1

• Similarly for other values of k. Hence the spectrum is:

W

X(W)

p-p

1

——oooo——

Q3.3 If an HDTV (full HD) screen with aspect ratio 16:9 has a width of 1.5m and is
viewed at at distance of 4H, what is the angle subtended by each pixel at the retina?

Outline solution

• For a 16:9 screen of width 1.5m, the screen height H is 1.5× 9÷ 16

• The viewing distance is therefore 4H=3.275m

• The width of a pixel is 1.5÷ 1920 = 0.00078125m

• The angle subtended by a pixel under these conditions is thus

θ = 2 tan−1

(
0.00078125

3.375× 2

)
≈ 0.0133o

——oooo——
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Q3.4 The impulse response for the Le Gall high pass analysis filter is h1[n] =
{

0.25 −0.5 0.25
}
.

Compute the output from this filter for the input sequence: x[n] =
{

1 2 3 0 0 · · ·
}
.

Outline solution

n 0 1 2 3 4 5
y1 [n] 0.25 -0.5 0.25 0 0 0
y2 [n] 0 0.5 -1 0.5 0 0
y3 [n] 0 0 0.75 -1.5 0.75 0
y [n] 0.25 0 0 -1 0.75 0

——oooo——

Q3.5 Compute the z-plane pole zero plots and the frequency responses for the following
filter pair: H0(z) = 1 + z−1 and H1(z) = 1− z−1.

Outline solution

H0 (z) = 1 + z−1 =
z + 1

z

• This implies that the function has a zero at z=-1 and a pole at z=0.

• The frequency response is given by:

H (Ω) = H (z) |z=ejΩ = 1 + e−jΩ

• Considering the magnitude response only:

Ω = 0 =⇒ |H (Ω)| = 2

Ω = π =⇒ |H (Ω)| = 0

Ω = π/2 =⇒ |H (Ω)| =
√

2
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Im

Re

|H(W)|

W

2

pp/2

• A similar calculation can be performed for H1 (z)

——oooo——

Q3.6 Perform median filtering on the following input sequence using a 5 tap median
filter and comment on the result.

x[n] = {1, 3, 5, 13, 9, 11, 6, 15, 17, 19, 29}

Outline solution
x[n] = {1, 3, 5, 13, 9, 11, 6, 15, 17, 19, 29}

• The output of the median filter is given by:

y[n] = {0, 0, 1, 3, 5, 9, 9, 11, 11, 15, 17, 17, 17, 0, 0}

• The input signal is linear in n with impulsive noise added. The median filter smooths
this out and helps to preserve ’good’ values without introducing the distortion that
would occur with a linear filter. There is a delay of 2 samples through the filter and
the first two and last two samples represent transient effects.

——oooo——

Q3.7 Compute the basis functions for the 2-point DFT.
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Outline solution

• The basis functions of the DFT are given by W = e−j2π/N . For the case of N=2 we
have:

W =

[
e−j2π0/2 e−j2π0/2

e−j2π0/2 e−j2π1/2

]
=

[
1 1
1 −1

]

• i.e. the basis functions are effectively sum and difference operators similar to the
2-pt DCT and the 2-pt KLT.

——oooo——

Q3.8 Consider the two 1-D digital filters:

h1 = [ 1 2 2 1]T ;
h2 = [ 1 −3 −3 1]T

Compute the equivalent 2-D digital filter where h1 performs horizontal filtering and h2

performs vertical filtering.

Outline solution

• The equivalent 2-D digital filter is given by:

h = h1h
T
2 =


1
2
2
1

 [ 1 −3 −3 1
]

h =


1 −3 −3 1
2 −6 −6 2
2 −6 −6 2
1 −3 −3 1



——oooo——

Q3.9 Compute biased and unbiased correlation estimates for the following sequence:

x[n] = {1, 2, 5,−1, 3, 6,−4,−1}
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Outline solution

• The biased estimate is given by:

Rxx [m] =
1

N

N−|m|−1∑
n=0

x [n]x [n+m]

• giving a solution for the above sequence, of:

r = [11.625, 0.25,−0.75, 4.5,−0.5,−0.875,−0.75,−0.125]

• The unbiased estimate is given by:

Rxx [m] =
1

N − |m|

N−|m|−1∑
n=0

x [n]x [n+m]

• giving a solution for the above sequence, of:

r = [11.625, 0.2857,−1, 7.2,−1,−2.333,−3,−1]

——oooo——

Q3.10 Plot the autocorrelation function, rv(k) for a white noise sequence v[n] with vari-
ance σ2

v . Form the autocorrelation matrix for this sequence for lags up to ±3. What is the
inverse of this autocorrelation matrix?

Outline solution i)

rv (k) = E {v [n] v [n− k]} = σ2
vδ (k)

rv(k)

k

sv
2

0 1 2 3-1-2
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ii)

rv (k) = E
{
vvT

}
=


σ2
v 0 0 0

0 σ2
v 0 0

0 0 σ2
v 0

0 0 0 σ2
v

 = σ2
vI

iii) The inverse of the above matrix (since, by definition, the inverse of I = I) is given by:

r−1v (k) =
(
σ2
vI
)−1

=
1

σ2
v

I

——oooo——

Q3.11 A feedback-based linear predictor with quantisation uses a predictor P (z) =
(z−1 + z−2)/2. Assume an input sequence as given below:

x[n] = {1, 3, 4, 3, 5, 6 · · · }

and that quantisation is performed as follows, with rounding of 0.5 values toward zero:

eQ[n] = rnd

(
e[n]

2

)
; eR[n] = 2eQ[n]

Compute the predictor output sequence eQ[n] and the reconstructed output signal y[n]
from the decoder. Comment on your results in terms of numerical precision.
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Outline solution

+

+

Quantiser 
Q

Predictor P(z)

Input X(z) Output EQ(z)

Rescale    
Q-1

Predicted 
input Xp(z)

-

decoder

x [n] 1 3 4 3 5 6 · · ·
xp [n] = (y [n− 1] + y [n− 2])/2 0 0 1 2.5 2.75 3.625 · · ·

e [n] = x [n]− xp [n] 1 3 3 0.5 2.25 2.375 · · ·
eQ [n] = rnd (e [n] /2) 0 1 1 0 1 1 · · ·
eR [n] = 2eQ [n] 0 2 2 0 2 2 · · ·

y [n] = xp [n] + eR [n] 0 2 3 2.5 4.75 5.625 · · ·

• Note: Internal numerical precision (consistency between encoder and decoder) is key
to maintaining prediction accuracy without drift. In this case, for example, y[n] could
be rounded to integer values prior to prediction.

——oooo——

Q3.12 Compute the entropies of the sequences y[n] and eQ[n] from Q3.11. Comment
on your result.

Outline solution

• Assuming that (very crudely) the probabilities of the sample values for both the input
sequence and the quantised error sequence are given by their relative frequencies of
occurrence, then these are:

• For x[n]:

P (1) = 1/6; P (3) = 2/6; P (4) = 1/6; P (5) = 1/6; P (6) = 1/6

• Hence:

Hx = −
N∑
i=1

P (si) log2 (P (si)) = 4× (1/6) log2 (1/6) + (1/3) log2 (1/3) = 2.2516bits
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• and for eQ[n]:

P (0) = 4/6; P (1) = 2/6

• Hence:

He = −
N∑
i=1

P (si) log2 (P (si)) = (2/3) log2 (2/3) + (1/3) log2 (1/3) = 0.9183bits

• So, on the basis of these simple assumptions, the average wordlength required to code
the quantised error signal is significantly smaller that that for the original signal.

——oooo——
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Chapter 4: Digital picture formats and representations

Q4.1 In video coding schemes it is usual to code the colour components in the form Y,
Cb, Cr rather than R, G, B. Explain why this approach is justified, its benefits in terms
of compression and how it is exploited in image sampling. Explain how pictures can be
efficiently stored or transmitted using a 4:2:0 format.

Outline solution

• Justification: the human visual system has a relatively poor response to colour in-
formation. The effective resolution of our colour vision is about half that of luminance
information.

• How exploited: separation of luma and chroma components thus means that we
can sub-sample the chroma information by a factor of two without affecting the luma
resolution or the perceived image quality.

• Benefits: this provides an immediate compression benefit as we are reducing the
bit rate by 50% before we start compression proper. As well as having compatibility
with monochrome displays, the availability of an independent luma signal is useful
during compression. For example, we normally perform motion estimation only on
the luma component and use the resulting vectors to compensate both luma and
chroma components. We also often base objective quality assessments only on the
luma component.

• 4:2:0: This system is the most common format for broadcast delivery, internet
streaming and consumer devices. It sub-samples the chroma signals by a factor of two
in both horizontal and vertical directions, maximising the exploitation of perceptual
colour redundancy.

——oooo——

Q4.2 Compute YUV and Y Cb Cr vectors for the following RGB vectors:

a) [R,G ,B ] =
[

128 128 128
]

b) [R,G ,B ] =
[

255 255 255
]

c) [R,G,B] =
[

100 0 0
]

Outline solution

• Assuming the RGB values are gamma corrected, we can use the following matrix-
vector calculation: Y

Cb
Cr

 =

 0.257 0.504 0.098
−0.148 −0.291 0.439

0.439 −0.368 −0.071

 R′

G′

B′

+

 16
128
128



• to give the following results:



TUTORIAL PROBLEMS 15

a) [Y ,Cb ,Cr ] =
[

126 128 128
]

b) [Y ,Cb ,Cr ] =
[

235 128 128
]

c) [Y ,Cb ,Cr ] =
[

42 113 172
]

——oooo——

Q4.3 If a colour movie of 100 minutes duration is represented using ITU-R.601 (720×576,
25fps@8bits, 4:2:0 format):

a) What hard disk capacity would be required to store the whole movie?
b) If the movie is encoded at a compression ratio CR=40:1 and transmitted over a

satellite link with 50% channel coding overhead, what is the total bitrate required for the
video signal?

Outline solution

(a) The bit rate is given by:

720× 576× 25× 8× 3

2
= 124, 416, 000b/s = 124Mb/s

• For a 100 minute movie, the total storage space required is:

100× 60× 124, 416, 000 = 746, 496, 000, 000bits ≈ 75GB

(b) With a compression ratio of 40:1, the bit rate would be approximately 1.866Mbps.
With 50% coding overhead, this represents a total bit rate of approximately 2.799Mbps.

——oooo——

Q4.4 Given a video sequence with a spatial resolution of 1920×1080 at 50fps using 10 bit
colour sampling, compute the (uncompressed) bit rates of 4:4:4, 4:2:0 and 4:2:2 systems.

Outline solution

• 4:4:4:1920× 1080× 50× 10× 3 ≈ 3.11Gbps

• 4:2:2: 1920× 1080× 50× 10× 2 ≈ 2.07Gbps

• 4:2:0: 1920× 1080× 50× 10× 1.5 ≈ 1.56Gbps

——oooo——

Q4.5 If, for a given 1920×1080 I-frame in 4:2:0 format, the mean entropy of each coded
16×16 luminance block is 1.3 bits/sample and that for each corresponding chrominance
block is 0.6 bits/sample, then estimate the total number of bits required to code this frame.
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Outline solution

• The number of macroblocks in each frame is 8100 - each comprising 1 luma block
and 2 chroma blocks.

• Each luma block has 256 samples whereas each chroma block has 64 samples.

• An estimate for the total number of bits required to code the frame is thus:

8100× (256× 1.3 + 64× 2× 0.6) = 3, 317, 760bits

——oooo——

Q4.6 Calculate the MAD between the following original image block X and its encoded
and decoded version, X̃:

X =


2 4 4 6
3 6 6 6
5 7 7 8
3 7 7 8

 ; X̃ =


2 5 5 5
4 4 6 6
5 5 7 8
4 5 7 7


Outline solution

• The absolute difference matrix is given by:

∣∣∣X− X̃
∣∣∣=


0 1 1 1
1 2 0 0
0 2 0 0
1 2 0 1


• Hence:

MAD =
12

16
= 0.75

——oooo——

Q4.7 Assuming a 5 bit digital image block, X, the reconstruction after image com-
pression is given by Y. Calculate the PSNR for the reconstructed signal and provide an
interpretation of the results in terms of error visibility.

X =


3 8 1 8
7 0 5 0
2 6 0 5
4 1 10 2

 ; Y =


4 10 1 9
7 0 6 1
3 6 0 4
5 1 12 3


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Outline solution

• We can see that xmax=31 and A=16. The error matrix is:

|X−Y| =


1 2 0 1
0 0 1 1
1 0 0 1
1 0 2 1


• The MSE is thus given by:

MSE =
16

16
= 1

• The PSNR for this block is given by:

PSNR = 10 · log10

(
16× 312

16

)
= 29.83dB

——oooo——

Q4.8 Assuming an 8 bit digital image, X, the reconstructions due to 2 alternative coding
schemes are given by Y1 and Y2 below. Calculate the Peak Signal to Noise Ratio (PSNR)
for each of the reconstructions and give an interpretation of the results in terms of error
visibility.

X =

 20 17 18
15 14 15
19 13 14

 ; Y1 =

 19 18 17
16 15 14
18 14 13

 ; Y2 =

 20 17 18
15 23 15
19 13 14


Outline solution

|X−Y1| =

 1 1 1
1 1 1
1 1 1

 ; |X−Y2| =

 0 0 0
0 9 0
0 0 0


• In the first case the MSE is given by:

MSE =
9

9
= 1

• and the PSNR for this reconstruction is given by:

PSNR = 10 · log10

(
9× 2552

9

)
= 48.13dB
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• In the second case the MSE is given by:

MSE =
81

9
= 9

• and the PSNR for this reconstruction is given by:

PSNR = 10 · log10

(
9× 2552

81

)
= 38.59dB

• Comparing these two cases, the Mean absolute differences are identical, but the
mean squared error is significantly higher for the second case which has a localised
rather than a distributed error. The perceptual effect of these errors will depend on
context, but, in general, it is likely that localised errors will be more noticeable that
distributed ones.

——oooo——

Q4.9 Describe a typical GOP structure used in MPEG-2 television broadcasting, ex-
plaining the different types of frame coding employed, the predictive relationships between
all frames in the GOP and the transmission order of the frames. If a transmission error
affects the 2nd P-frame in the GOP, how many pictures are likely to be affected due to
error propagation?

Outline solution

forward prediction

Bidirectional prediction

I P BP P BB B BB B B

• A typical GOP structure would comprise 12 or 15 frames in an IBBPBBPBBPBB
format.
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• See main text for a full description of frame types.

• Assuming a 12 frame GOP, if a transmission error affects the 2nd P-frame in the
GOP, then temporal propagation of errors would persist until the next I frame. i.e.
a total of 6 P and B frames would be affected.

——oooo——

Q4.10 An HDTV satellite operator allocates 10Mb/s to each programme in the DVB-S
multiplex. State what colour sub-sampling format will be used for this and calculate the
required compression ratio for a 1080i25 system.

Outline solution

• The colour subsampling format used for such a satellite transmission is invariably
4:2:0.

• Assuming a typical 8 bit format, the raw bit rate for a 1080i25 4:2:0 system is:
1920× 1080× 25× 8× 1.5 = 622, 080, 000 ≈ 622Mbps

• The required compression ratio for a 1080i25 4:2:0 transmission at 10Mbps would
therefore be approximately: 62:1.

——oooo——

Q4.11 Compute the gamma corrected version of the following image block for the case
where γ = 0.45. Assume an 8 bit wordlength.

X =

 20 17 18
15 14 15
19 13 14



Outline solution

• Using the equation:
V = c1Φγ + c2

• Assuming c1 = 1 and c2 = 0, then we have:

X′ =

 81 76 78
71 69 71
79 67 69


• Note that values of gamma less than one will ’stretch’ lower signal values such as

those in this example.

——oooo——
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Q4.12 Bayer filtering (demosaicing) is commonly used to interpolate colour planes for
single sensor cameras.

a) Draw a diagram of a 5 by 5 Colour Filter Array.
b) Derive the demosaicing kernels for this array for the R, G and B colour planes.

Assume that bilinear interpolation is used for demosaicing.
c) Given the following acquired pixel values for the array in (a) in [R G B] format,

calculate missing values, for location [x,y]=[1,1] using the interpolation kernel in (b).

[x x 10] [x 3 x]

[x x 4]

[x x 1][x x 3][x x 20]

[x x 20] [x x 0]

[x x 1][x x 2]

[x 1 x]

[x 2 x][x 10 x]

[x 10 x] [x 2 x]

[x 10 x]

[x 0 x][x 5 x][x 10 x]

[x 10 x] [x 5 x]

[4 x x]

[20 x x] [4 x x]

[20 x x]

Outline solution a)

B G

B

BBB

B B

BB

G

GG

G G

G

GGG

G G

R

R R

R

B G3,0

B

BBB

B B

BB

G4,3

G3,4G1,4

G1,2 G3,2

G1,0

G4,1G2,1G0,1

G0,3 G2,3

R

R R

R

B G

B

BBB

B B

BB

G

GG

G G

G

GGG

G G

R3,1

R1,3 R3,3

R1,1

B0,0 G

B2,2

B4,4B2,4B0,4

B0,2 B4,2

B4,0B2,0

G

GG

G G

G

GGG

G G

R

R R

R

= + +

b)

KB = KR = 1
4

 1 2 1
2 4 2
1 2 1

 ; KG = 1
4

 0 1 0
1 4 1
0 1 0



c)

R1,1 = 1
4

 1 2 1
2 4 2
1 2 1

 ∗
 0 0 0

0 20 0
0 0 0

 = 20
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G1,1 = 1
4

 0 1 0
1 4 1
0 1 0

 ∗
 0 10 0

10 0 5
0 10 0

 = 9

B1,1 = 1
4

 1 2 1
2 4 2
1 2 1

 ∗
 10 0 2

0 0 0
20 0 4

 = 9

——oooo——



22 TUTORIAL PROBLEMS

Chapter 5: Transforms for image and video compression

Q5.1 Derive the 1-D two-point KLT for a stationary real-valued process, x, that has the
following autocorrelation matrix:

Rx =

[
rxx (0) rxx (1)
rxx (1) rxx (0)

]

Outline solution

• We obtain the eigenvalues by solving |λI−Rx| = 0. This yields:

λ1 = rxx (0) + rxx (1)
λ2 = rxx (0)− rxx (1)

• The eigenvectors are thus given by (where a and b are arbitrary constants):

V1 =

[
a
a

]
V2 =

[
b
−b

]

• If we constrain these vectors to form an orthonormal pair, then:

a = b =
1√
2

• In the case of the 2 point KLT, the basis functions are not dependent on the au-
tocorrelation values (this is not the case for higher order transforms) and the KLT
transform matrix is given by:

A =
1√
2

[
1 1
1 −1

]

——oooo——

Q5.2 Prove that the following vectors are an orthonormal pair:

a0 =
[ √

2
2

√
2

2

]T
; a1 =

[ √
2

2 −
√

2
2

]T
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Outline solution

• The conditions for orthonormality are:

aH
i aj =

{
1; i = j

0; i 6= j

• These conditions are satisfied in this case as we have:

aT
0 a0 =

[ √
2

2

√
2

2

] [ √2
2√
2

2

]
= 1

aT
1 a1 =

[ √
2

2 −
√

2
2

] [ √2
2

−
√

2
2

]
= 1

aT
0 a1 =

[ √
2

2

√
2

2

] [ √2
2

−
√

2
2

]
= 0

——oooo——

Q5.3 Prove that the four point DWHT is a unitary transform.

Outline solution

• The four point DWHT is given by:

H4 =
1

2


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1



• The norm of each basis function is unity. For example, for the first row we have:

hT
0 h0 =

1

4

[
1 1 1 1

] 
1
1
1
1

 = 1

• The inner product of different basis functions is always 0. For example, for the first
2 rows we have:
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hT
0 h1 =

1

4

[
1 1 1 1

] 
1
1
−1
−1

 = 0

——oooo——

Q5.4 Compute the basis functions for the eight point 1-D DWHT. Compute the first
four basis functions for the four point 2-D DWHT.

Outline solution

• The 8-point 1-D DWHT can be computed as follows:

H8 =
1√
8

[
H4 H4

H4 −H4

]

• Where:

H4 =
1

2


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1



• The 8-point DWHT is thus given by (reordering the basis functions in sequency
order):

H8 =
1

2
√

2



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1



• For the case of the four point 2-D DWHT, we can compute the basis functions as
the outer product of the 1-D basis functions. Thus we have:

h0h
T
0 =

1

4


1
1
1
1

 [ 1 1 1 1
]

=
1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



• Similarly:
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h0h
T
1 =

1

4


1
1
1
1

 [ 1 1 −1 −1
]

=
1

4


1 1 −1 −1
1 1 −1 −1
1 1 −1 −1
1 1 −1 −1



h0h
T
2 =

1

4


1
1
1
1

 [ 1 −1 −1 1
]

=
1

4


1 −1 −1 1
1 −1 −1 1
1 −1 −1 1
1 −1 −1 1



h0h
T
3 =

1

4


1
1
1
1

 [ 1 −1 1 −1
]

=
1

4


1 −1 1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 1 −1



• Other 2-D basis functions can be computed in a similar manner.

——oooo——

Q5.5 Use the DWHT to transform the following 2-D image block, S. Assuming that all
data and coefficients are represented as 8 bit numbers and that compression is achieved
in the transform domain by selecting only one most dominant coefficient for transmission,
compute the decoded data matrix and its PSNR.

S =


10 10 10 10
10 10 10 10
10 10 9 9
10 10 9 9


Outline solution

• Computing the forward 2-D transform:

C = HXHT

[1 mark]

C = HXHT = 1
4


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1




10 10 10 10
10 10 10 10
10 10 9 9
10 10 9 9




1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 =


39 1 0 0
1 −1 0 0
0 0 0 0
0 0 0 0


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[3 marks]

——oooo——

• Selecting the 4 most dominant coefficients and performing an inverse transform,
followed by rounding:

S̃ = HTCH = rnd

1
4


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1




39 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1




=


10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10



• The PSNR for this reconstruction is then:

PSNR = 10 · log10

(
16× 2552

4

)
= 54.2dB

——oooo——

Q5.6 Given the four point DWHT basis functions, if the coefficients after transformation
are: c (0) = 1; c (1) = 1

4 ; c (2) = −1
2 ; c (3) = 3, plot the weighted basis functions and

hence reconstruct the original signal waveform.
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Outline solution

c0h0 c1h1

0.5

0.125

c2h2

0.25

c3h3

1.5

x[n]

1.875

-0.625

2.125

-1.375

——oooo——

Q5.7 The 1-D discrete cosine transform is given by:

C (k) =

√
2

N
εk

N−1∑
n=0

x [n] cos

(
π (n+ 0.5) k

N

)
0 ≤ n, k ≤ N − 1

where:

εk =

{
1/
√

2 : k = 0
1 : otherwise

Calculate the numerical values of the basis functions for a 1-D 4 point DCT.
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Outline solution

• The basis function matrix for the 4 point DCT is given by:

A4 =

√
1

2


√

1
2

√
1
2

√
1
2

√
1
2

cos(π8 ) cos(3π
8 ) − cos(3π

8 ) − cos(π8 )
cos(π4 ) − cos(π4 ) − cos(π4 ) cos(π4 )

cos(3π
8 ) − cos(π8 ) cos(π8 ) − cos(3π

8 )


• Evaluating numerical values to 3 decimal points gives:

A4 =


0.5 0.5 0.5 0.5

0.653 0.271 −0.271 −0.653
0.5 −0.5 −0.5 0.5

0.271 −0.653 0.653 −0.271


• This indicates potential issues with drift due to numerical mismatch between encoder

and decoder. This is one of the reasons why integer transforms have been introduced
in standards such as H.264/AVC.

——oooo——

Q5.8 The DCT is an orthonormal transform. Explain the term orthonormal and describe
what it means in practice for the transform. Write down the formula and the basis function
matrix for the 1-D 4-point DCT. Using this, show that, for the 1-D DCT:

εk =

{
1/
√

2

1

k = 0

otherwise

Outline solution

• The DCT basis functions are given by:

a (k, n) =

√
2

N
εk cos

(
πk

N
(n+ 0.5)

)
; 0 ≤ k, n ≤ N − 1

• For the case of a 4 point DCT, the basis function matrix is thus:

A =

√
2

N
εk


cos(0) cos(0) cos(0) cos(0)
cos(π8 ) cos(3π

8 ) cos(5π
8 ) cos(7π

8 )
cos(π4 ) cos(3π

4 ) cos(5π
4 ) cos(7π

4 )
cos(3π

8 ) cos(9π
8 ) cos(15π

8 ) cos(21π
8 )


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=

√
1

2
εk


cos(0) cos(0) cos(0) cos(0)
cos(π8 ) cos(3π

8 ) − cos(3π
8 ) − cos(π8 )

cos(π4 ) − cos(π4 ) − cos(π4 ) cos(π4 )
cos(3π

8 ) − cos(π8 ) cos(π8 ) − cos(3π
8 )


• Let us convince ourselves that this transform is orthonormal and confirm the value of
εk. Consider for example, the first basis function. We can rewrite this as the vector
a0, as follows:

a0 = k0

[
1 1 1 1

]
• Now we know that for orthonormality the basis functions must have unity norm,

thus:

‖a0‖ = k0

√
12 + 12 + 12 + 12 = 2k0 = 1

• Hence:

k0 =
1

2

• Similarly for the second basis function:

‖a1‖ = k1

√
cos2(

π

8
) + cos2(

3π

8
)+cos2(

3π

8
) + cos2(

π

8
) =
√

2k1 = 1

• Hence:
k1 =

1√
2

• And it can similarly be shown that:

k2 = k3 =
1√
2

• So in general we have, as expected:

ki =
1√
2
εi; εi =

{
1/
√

2 : i = 0

1 : i 6= 0

——oooo——
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Q5.9 Compute the DCT transform coefficient vector for an input sequence, x = [1001]T.

Outline solution

• The 1-D DCT for this input is given by:

C =


0.5 0.5 0.5 0.5

0.653 0.271 −0.271 −0.653
0.5 −0.5 −0.5 0.5

0.271 −0.653 0.653 −0.271




1
0
0
1

 =


1
0
1
0



——oooo——

Q5.10 Calculate the DCT of the following 2×2 image block:

X =

[
21 19
15 20

]

Outline solution
C2 = AXAT

C2 =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [
21 19
15 20

] [
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]

=
1

2

[
1 1
1 −1

] [
21 19
15 20

] [
1 1
1 −1

]

=

[
37.5 −1.5
2.5 3.5

]

——oooo——

Q5.11 Quantise the result from Q5.9 using the following quantisation matrix:

Q =

[
4 8
8 8

]
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Outline solution
C2Q = rnd (C2/.Q)

C2Q =

[
rnd(37.5/4) 0

0 0

]
=

[
9 0
0 0

]

——oooo——

Q5.12 Perform inverse quantisation and an inverse DCT on the output from Q5.11.

Outline solution

• Perform inverse quantisation (rescaling) and inverse quantisation on the previous
result:

X̃ =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [
36 0
0 0

] [
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]

=
1

2

[
1 1
1 −1

] [
36 0
0 0

] [
1 1
1 −1

]

=

[
18 18
18 18

]

• Note: As expected, this gives a reconstruction error due to quantisation. Inverse
transformation without quantisation would give the same values as in the original
block - try it!

——oooo——

Q5.13 Compute the 2-D-DCT of the following (4×4) image block:

X =


1 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


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Outline solution

• Let:

C2 = C1A
T

• Where:

C1 = AX

• If we evaluate to 3dp we have:

C1 =


0.5 0.5 0.5 0.5

0.653 0.271 −0.271 −0.653
0.5 −0.5 −0.5 0.5

0.271 −0.653 0.653 −0.271




1 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 =


1 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0


• And hence:

C2 =


1 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0




0.5 0.653 0.5 0.271
0.5 0.271 −0.5 −0.653
0.5 −0.271 −0.5 0.653
0.5 −0.653 0.5 −0.271

 =


0.5 0.653 0.5 0.271

0 0 0 0
0.5 0.653 0.5 0.271

0 0 0 0


• Note that, due to finite precision arithmetic, numerical errors can be introduced.

Hence if these coecients are inverse-transformed, then the result may differ from the
original. This problem can be addressed by using higher precision arithmetic or by
employing integer transforms, such as that used in H.264/AVC.

——oooo——

Q5.14 Given the following block of DCT coefficients and the associated quantisation
matrix, compute the block of quantised coefficients. Perform zig-zag scanning to form a
string of {run/value} symbols (where ‘run’ is the number of zeros preceding a non-zero
value) appropriate for entropy coding.

C =



128 50 −20 22 12 27 −5 7
40 −25 26 20 −34 −2 13 −5
−10 22 12 12 26 12 3 8

12 −2 16 −7 9 3 17 17
−32 6 21 9 18 5 4 7
−10 −7 −14 3 −2 13 18 18

11 −9 −9 4 8 13 6 9
−7 19 15 8 6 −6 18 33


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Q =



8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83



Outline solution

• The quantised coefficient matrix is given by (assuming 0.5 values rounded up):

CQ =



16 3 −1 1 0 1 0 0
3 −2 1 1 −1 0 0 0
−1 1 0 0 1 0 0 0

1 0 1 0 0 0 0 0
−1 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


• Performing zig zag scanning:

3

• The sequence of run value symbols is thus given by:

{0/16, 0/3, 0/3, 0/− 1, 0/− 2, 0/− 1, 0/1, 0/1, 0/1, 0/1, 0/− 1, 2/1, 1/1, · · ·

· · · 0/− 1, 1/1, 4/1, 1/1, 13/1, EOB}

• Note: In practice, the DC coefficient value may be coded independently of the AC
values.

——oooo——



34 TUTORIAL PROBLEMS

Q5.15 Calculate the number of multiply and accumulate (MAC) operations required to
compute a conventional (4×4) point 2-D-DCT. Assume that the separability property of
the 2-D-DCT is exploited.

Outline solution

• Assuming separability, the basic 4 point 2-D DCT can be calculated as follows:

C = ASAT

• Considering the dimensions of the matrix calculation:

C = [4× 4]× [4× 4]× [4× 4]

• Each matrix product requires a total of 16×4 = 64 MACs, thus giving a total for the
calculation of 128 MACs.

——oooo——

Q5.16 The complexity of the DCT can be reduced using ‘Fast’ methods such as Mc-
Govern’s Algorithm. Derive McGovern’s algorithm for a 4-point 1-D-DCT. Compare its
complexity (again assuming exploitation of separability) with that of the conventional
approach for the case of a (4×4) point 2-D-DCT.

Outline solution

• The basic 1-D 4 point DCT can be written as:


c (0)
c (1)
c (2)
c (3)

 =


a2 a2 a2 a2

a1 a3 −a3 −a1

a2 −a2 −a2 a2

a3 −a1 a1 −a3



x [0]
x [1]
x [2]
x [3]


• where

ai = cos
(
i
π

8

)

• Splitting into even and odd indexed rows. we can rearrange as follows:[
c (0)
c (2)

]
=

[
a2 a2

a2 −a2

] [
x [0] + x [3]
x [1] + x [2]

]
(1)

[
c (1)
c (3)

]
=

[
a1 a3

a3 −a1

] [
x [0]− x [3]
x [1]− x [2]

]
(2)
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• Equation (1) can be further subdivided as follows:

c (0) = a2 (x [0] + x [1] + x [2] + x [3])

c (2) = a2 (x [0]− x [1]− x [2] + x [3])

• These two equations can be implemented with 2 multiplies and 4 additions.

• The second equation (2) can be simplified using standard rotator products:

[
c (1)
c (3)

]
=

[
1 1 0
0 1 −1

] (a1 − a3) (x [0]− x [3])
a3 (x [0] + x [1]− x [2]− x [3])

(a3 − a1) (x [1]− x [2])



• This requires an additional 3 multiplies and 7 additions. The total computation
requirement for the 4 point 1-D DCT using this approach is 5 multiplication and 11
addition operations.

• The computational load for a 2-D DCT implemented using this approach, exploiting
separability, is thus: 40 multiplications and 88 additions.

——oooo——

Q5.17 Compute the SATD (sum of Absolute Transformed Differences) for the image
blocks X and Y in Q4.7.

Outline solution SATD is defined as the sum of absolute transformed (DWHT is used
here) difference between two blocks, so we first calculate the block difference:

D = X−Y =


3 8 1 8
7 0 5 0
2 6 0 5
4 1 10 2

−


4 10 1 9
7 0 6 1
3 6 0 4
5 1 12 3

 =


−1 −2 0 −1
0 0 −1 −1
−1 0 0 1
−1 0 −2 −1


Then we calculate the 2D DWHT of the difference block:

C = HDHT =
1

4


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1



−1 −2 0 −1
0 0 −1 −1
−1 0 0 1
−1 0 −2 −1




1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1


T
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C =


−2.5 0 0 −0.5
−0.5 0 0 1.5
−1.5 0 0 0.5

0.5 −2 0 0.5


Finally the sum of absolute transformed difference is calculated for all 16 pixels:

SATD =

16∑
i,j=1

|ci,j | = 10

where ci,j ∈ D.
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Chapter 6: Filterbank methods

Q6.1 For a filterbank downsampler, show that the frequency domain behaviour of the
output signal, xd[n] is related to that of the input x[n] by:

Xd (Ω) = 0.5
[
X
(
ejΩ/2

)
+X

(
e−jΩ/2

)]
Outline solution

• From chapter 6, the input-output relationship for a downsampler is given by xd [n] =
x [nM ]. The z transform of the downsampled signal is then given by:

Xd (z) =
∞∑

n=−∞
xd [n] z−n =

∞∑
n=−∞

x [nM ] z−n

• Substituting m=nM:

Xd (z) =
∞∑

m=−∞
x′ [m] z−m/M = X ′

(
z1/M

)
(3)

• Note that x′ [n] is not the same as x [n]. They can however be related by x′ [n] =
c [n]x [n], where:

c [n] =

{
1; n = 0,±M,±2M . . .

0; otherwise

• where c [n] can be represented, using the DFT, as:

c [n] =
1

M

M−1∑
k=0

Wnk
M

• For the case of M=2, we have:

c [n] =
1

2
(1 + (−1)n)

• Now the z-transform of x′ [n] is given by:

X ′ (z) =
1

M

∞∑
n=−∞

(
M−1∑
k=0

Wnk
M

)
x [n] z−n =

1

M

M−1∑
k=0

( ∞∑
n=−∞

x [n]Wnk
M z−n

)

1

M

M−1∑
k=0

X
(
zW−kM

)
(4)
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• Equation (4) can now be substituted into equation (3) to give:

Xd (z) =
1

M

M−1∑
k=0

X
(
z1/MW−kM

)

• Consider the case where M=2:

Xd (z) =
1

2

(
X
(
z

1/2
)

+X
(
−z1/2

))

• Evaluating this on the unit circle in the z-plane gives the frequency response, thus:

Xd

(
ejΩ
)

=
1

2

(
X
(
e
jΩ/2
)

+X
(
−ejΩ/2

))

• or equivalently:

Xd

(
ejΩ
)

=
1

2

(
X
(
e
jΩ/2
)

+X
(
e
jΩ/2+π

))

——oooo——

Q6.2 The figure below shows a simple two-band analysis-synthesis filterbank and a
representative input spectrum.

p

X(W)

W

Ho(z) Go(z)

G1(z)H1(z)

   2

   2    2

   2

X(z)
+

D(W)C(W)B(W)A(W)

E(W) F(W) G(W) H(W)

X(z)

It can be shown that the output of this system is given by:

X̃ (z) =
1

2
X (z) [G0 (z)H0 (z) +G1 (z)H1 (z)]+

1

2
X (−z) [G0 (z)H0 (−z) +G1 (z)H1 (−z)]

where the upsampler and downsampler relationships are given by:
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C
(
ejΩ
)

= B
(
ej2Ω

)

B
(
ejΩ
)

= 0.5
[
A
(
ejΩ/2

)
+A

(
−ejΩ/2

)]
Using the up-sampler and down-sampler relationships given above, compute and sketch
the spectra at points A to H. Assume that all the filters have ideal brickwall responses.
Hence demonstrate graphically that the system is capable of perfect reconstruction.

Outline solution

• Let us assume that all filters are ideal and exhibit brickwall responses. The upsam-
pling and downsampling relationships are given by:

C
(
ejΩ
)

= B
(
ej2Ω

)

B
(
ejΩ
)

= 0.5
[
A
(
ejΩ/2

)
+A

(
ej(Ω/2+π)

)]

• Thus:

p/2

A(W)

Wp

p/2

C(W)

Wp

p/2

E(W)

Wp

p/2

G(W)

Wp

p/2

F(W)

Wp

p/2

H(W)

Wp

p/2

D(W)

Wp

p/2

B(W)

Wp

——oooo——

Q6.3 Given the following subband filters:

H0 (z) = 1√
2

(
1 + z−1

)
; H1 (z) = 1√

2

(
1− z−1

)
G0 (z) = 1√

2

(
1 + z−1

)
; G1 (z) = 1√

2

(
−1 + z−1

)
Show that the corresponding two band filterbank exhibits perfect reconstruction.
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Outline solution

• For perfect reconstruction we must satisfy:

F0(z) =
1

2
[H0 (z)G0 (z) +H1 (z)G1 (z)] = cz−k

• and for alias-free operation, we must satisfy:

F1(z) =
1

2
[H0 (−z)G0 (z) +H1 (−z)G1 (z)] = 0

• We can see from the second equation that this filter bank is alias-free, because:

F1(z) =
1

4

[(
1− z−1

) (
1 + z−1

)
+
(
1 + z−1

) (
−1 + z−1

)]
= 0

• We can further show that the filterbank exhibits perfect reconstruction since:

F0(z) =
1

4

[(
1 + z−1

) (
1 + z−1

)
−
(
1− z−1

) (
1− z−1

)]
= z−1

——oooo——

Q6.4 Demonstrate that the following filter relationships produce a filterbank that is
alias-free and offers perfect reconstruction:

H1 (z) = zG0 (−z); G1 (z) = z−1H0 (−z);
P (z) + P (−z) = 2z−2; P (z) = H0 (z)G0 (z)

Assuming that G0 (z) = H0 (z) = z−1, what is the output of this filterbank given an input
sequence {1,1,0}?

Outline solution

• For alias-free operation, we must satisfy:

F1(z) =
1

2
[H0 (−z)G0 (z) +H1 (−z)G1 (z)] = 0

• We can thus see that this filter bank is alias-free, because:

F1(z) =
1

2

[(
−z−1

) (
z−1
)

+ z
(
−z−1

)
(z−1)

(
−z−1

)]
= 0
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• For perfect reconstruction we must satisfy:

F0(z) =
1

2
[H0 (z)G0 (z) +H1 (z)G1 (z)] = cz−k

• Thus:

F0(z) =
1

2

[(
z−1
) (
z−1
)

+ z
(
−z−1

) (
z−1
)

(−z−1)
]

= z−2

• For an input sequence of {1,1,0...}, the output will simply be a delayed version of
this, i.e. {0,0,1,1,0...}.

——oooo——

Q6.5 Referring to the figure below, a signal, x[n], is downsampled by 2 and then up-
sampled by 2. Show that, in the z-domain, the input–output relationship is given by:

X̃ (z) = 0.5 [X (z) +X (−z)]

   2    2x[n] x[n]

Outline solution

• The given upsampler-downsampler combination will produce an output sequence:{
x [0] 0 x [2] 0 · · ·

}
. Let us see if the given equation produces the same result.

The z-transform of the original sampled signal, x [n], is:

X (z) =
∞∑

n=−∞
x [n] z−n

• Hence:

X (−z) =

∞∑
n=−∞

x [n] (−z)−n

• So, substituting these expressions into the equation given in the question, we have:
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X̃ (z) = 0.5 [X (z) +X (−z)] = 0.5

[ ∞∑
n=−∞

x [n] z−n (1 + (−1)n)

]

• Where:

(1 + (−1)n) =

{
2 : n even
0 : n odd

• This clearly produces an operation identical to the downsampler-upsampler combi-
nation.

——oooo——

Q6.6 Demonstrate that the following quadrature mirror filter relationships produce a
filter bank that is alias-free and offers perfect reconstruction:

H0 (z) = z−2 + z−3; G0 (z) = H1 (−z);
H1 (z) = H0 (−z); G1 (z) = −H0 (−z)

What are the limitations of the above filterbank? How, in practice, are more useful QMF
filterbanks designed?

Outline solution The filters are given by:

H0 (z) = z−2 + z−3; G0 (z) = z−2 + z−3;
H1 (z) = z−2 − z−3; G1 (z) = −z−2 + z−3

• For perfect reconstruction we must satisfy:

F0(z) =
1

2
[H0 (z)G0 (z) +H1 (z)G1 (z)] = cz−k

• For alias-free operation, we must satisfy:

F1(z) =
1

2
[H0 (−z)G0 (z) +H1 (−z)G1 (z)] = 0

• We can see from the second equation that this filter bank is alias-free, because:

F1(z) =
1

2

[(
z−2 − z−3

) (
z−2 + z−3

)
+
(
z−2 + z−3

) (
−z−2 + z−3

)]
= 0

• We can further show that the filterbank exhibits perfect reconstruction since:
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F0(z) =
1

2

[(
z−2 + z−3

) (
z−2 + z−3

)
+
(
z−2 − z−3

) (
−z−2 + z−3

)]
= 2z−5

• In practice, approximate QMF filters can be usefully designed where the character-
istic does not exactly provide perfect reconstruction. In such cases, the amplitude
distortion can be minimised using an optimisation procedure to iteratively adjust the
filter coefficients. We ideally want the magnitude response of the filter characteristic
to have a sharp transition so that subbands are spectrally distinct while providing
an overall system response that is approximately all-pass. This means that the fil-
ters have to be designed so that each branch delivers an attenuation of 6dB (0.5) at
the point where the low- and high-pass responses intersect - at one quarter of the
sampling frequency. Each of the four filters must therefore have an attenuation of
3dB at the half Nyquist frequency.

• Such filters often minimise the residual amplitude distortion using an objective mea-
sure, based upon stop-band attenuation and the requirement to maintain the power
symmetry property of the filters. Although these filters do not provide perfect re-
construction, for compression applications where significant quantisation error is in-
troduced prior to transmission of the subband coefficients, this small distortion may
not be a major issue. However, wavelet filters can be designed that do offer perfect
reconstruction.

——oooo——

Q6.7 A two-channel single stage 1-D QMF filterbank is constructed using the low-pass
prototype filter H0(z) = (1 + z−1). Derive the other filters needed for this system and
compute the output signal for an input: x[n] = {2, 3, 6, 4}.

Outline solution

• We can base our QMF filter design on the following relationships:

H0 (z) = H (z) ; H1 (z) = H (−z)

G0 (z) = H (z) ; G1 (z) = −H (−z)

• Thus the filters are:

H0 (z) =
(
1 + z−1

)
; H1 (z) =

(
1− z−1

)
;

G0 (z) =
(
1 + z−1

)
; G1 (z) =

(
−1 + z−1

)
• In this case, the scaling factor of 1/

√
2 has been omitted so we expect our response to

be scaled by a constant of 2 as well as exhibit a delay of one sample. For an input
sequence of x[n] = {2, 3, 6, 4}, the output will therefore be y[n] = {0, 4, 6, 12, 8, 0...}.

——oooo——
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Q6.8 A 1-D wavelet filterbank comprises two stages of decomposition and uses the same
filters as defined in Q6.7 (but factored by 1/

√
2 to ensure exact reconstruction). The input

sequence is x[n] = {1, 1, 1, 1, 1, 1, 1, 1}. Using boundary extension, and assuming critical
sampling between analysis and synthesis banks, compute the signal values at all internal
nodes in this filter bank, and hence demonstrate that the output sequence is identical to
the input sequence.

Outline solution

• The input bitstream to the filterbank is x[n] = {1, 1, 1, 1, 1, 1, 1, 1}. We can compute
the convolution of the filters with the input sequence at all intermediate nodes, as
defined in the following figure:

h0[n] g0[n]

g1[n]h1[n]

   2

   2    2

   2

x[n] y[n]

c[n]

d[n]

e[n]

f[n]

g[n]

h[n]

+

b[n]

a[n]

• Let us assume that boundary extension is used. The signal values at each interme-
diate node are given in the following table (ignoring for convenience for for the time
being the 1/

√
2 factors in the filter responses).

x[n] 1 1 1 1 1 1 1 1
a[n] 1 2 2 2 2 2 2 2 1
b[n] 1 0 0 0 0 0 0 0 -1
c[n] 1 2 2 2 1
d[n] 1 0 0 0 -1
e[n] 1 0 2 0 2 0 2 0 1
f [n] 1 0 0 0 0 0 0 0 -1
g[n] 1 1 2 2 2 2 2 2 1 1
h[n] -1 1 0 0 0 0 0 0 1 -1
y[n] 0 2 2 2 2 2 2 2 2 0

• As can be observed, when factored by 1/2 to account for the filter weights, this
provides perfect reconstruction with a delay of 1 sample.

——oooo——

Q6.9 Repeat Q6.8, but this time assume that the bit-allocation strategy employed pre-
serves the low frequency subband but completely discards the high-pass subband. Assum-
ing a wordlength of 4 bits, what is the PSNR of the reconstructed signal after decoding?
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Outline solution

• If the high-pass subband is completely discarded during transmission then:

y[n] = g [n] = {1, 1, 2, 2, 2, 2, 2, 2, 1, 1}

• Ignoring the first and last samples, the output can be compared to the input using
PSNR (assuming a wordlength of 4 bits) to give PSNR=60dB.

——oooo——

Q6.10 Draw the diagram for a 2-D, three-stage wavelet filter bank. Show how this
decomposition tiles the 2-D spatial frequency plane and compute the frequency range of
each subband. Assuming that the input is of dimensions 256×256 pixels, how many samples
are contained in each subband?
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Outline solution

H0(z)

H1(z)

   2

   2

X(z)

H0(z)

H1(z)

   2

   2

H0(z)

H1(z)

   2

   2

H0(z)

H1(z)

   2

   2

H0(z)

H1(z)

   2

   2

H0(z)

H1(z)

   2

   2

Xhh
1(z)

Xhl
1(z)

Xlh
1(z)

Xhh
2(z)

Xhl
2(z)

Xlh
2(z)

Rows

Columns

Stage 1

Stage 2

H0(z)

H1(z)

   2

   2

H0(z)

H1(z)

   2

   2

H0(z)

H1(z)

   2

   2 Xhh
3(z)

Xhl
3(z)

Xlh
3(z)

Xll
3(z)

Stage 3

• Note: Although not explicily shown the data path must be transposed between the
row and column processing and between each stage in the above diagram.

• Frequency domain tiling:

Xll
3 Xhl

3

Xlh
3 Xhh

3

Xhh
2

Xhl
2

Xlh
2

Xhh
1

Xhl
1

Xlh
1

• With an input image size of 256×256 pixels, the stage 1 subbands are of dimension
128×128 coefficients, the stage 2 subbands are 64×64, and the stage 3 subbands are
32×32.
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——oooo——

Q6.11 Prove that the following two diagrams are equivalent.

H(z)
X(z)

   2
Y(z)

X(z) Y(z)
H(z2)    2

   2

   2

Outline solution

• Consider an intermediate point, which we will refer to as Y ′(z), prior to the final
upsampler. In the first case, of the downsampler followed by a filter H(z), we have:

Y ′(z) =
1

2
H(z)

(
X
(
z

1
2

)
+X

(
−z

1
2

))

• And, in the second case, of the modified filter followed by the downsampler, we have:

Y ′(z) =
1

2

(
X
(
z

1
2

)
H(z) +X

(
−z

1
2

)
H(z)

)

• These two equations are clearly identical. The final output Y (z) in both cases is
then:

Y (z) = Y ′
(
z2
)

=
1

2

(
X (z)H(z2) +X (−z)H(z2)

)

——oooo——
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Chapter 7: Lossless compression methods

Q7.1 Consider the following codewords for the given set of symbols:

Symbol C1 C2 C3
a1 0 0 01
a2 10 01 10
a3 110 110 11
a4 1110 1000 001
a5 1111 1111 010

Identify which are prefix codes.

Outline solution

• The only prefix code in this table is C1, as all other codes are ambiguous. For
example in C2, a1 is the prefix of a2 and in C3 a1 is the prefix of a5.

——oooo——

Q7.2 Derive the set of Huffman code words for the symbol set with the following prob-
abilities:

P (s0) = 0.06; P (s1) = 0.23; P (s2) = 0.30; P (s3) = 0.15;
P (s4) = 0.08; P (s5) = 0.06; P (s6) = 0.06; P (s7) = 0.06;

What is the transmitted binary sequence corresponding to the symbol pattern s0, s4, s6?
What symbol sequence corresponds to the code sequence: 000101110? Calculate the first
order entropy of this symbol set, the average codeword length and the coding redundancy.

Outline solution

s2(0.3)

s0(0.06)

s4(0.08)

s3(0.15)

s1(0.23)
0

1

1
s7(0.06)

s6(0.06)

s5(0.06) s0(0.06)

s5(0.06)

s’6(0.12)

s2(0.3)

s1(0.23)

s3(0.15)

s4(0.08)

s’0(0.12)

s’6(0.12)

s2(0.3)

s1(0.23)

s3(0.15)

s4(0.08)

s’’6(0.20)

s3(0.15)

s’0(0.12)

s1(0.23)

s2(0.3)

s’3(0.27)

s1(0.23)

s’’6(0.20)

s2(0.3)

1

s’1(0.43)

s2(0.3)

s’3(0.27)

s’2(0.57)

s’1(0.43)

0

0

0

0

0

0
1

1

1

1

1

• The transmitted binary sequence corresponding to the symbol pattern s0, s4, s6 is
0110 111 1100.
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• The symbol sequence corresponding to the code sequence: 000101110 is s2, s3, s4

• The 1st order entropy for this alphabet is given by:

H = −
∑

P log2 P

= −(0.06× log2 0.06 + 0.023× log2 0.23 + 0.3× log2 0.3 + . . .+ 0.06× log2 0.06)

= 2.6849bits/symbol

• The average codeword length can be computed from the following table. The average
length l in this case is 2.71 bits/symbol.

Symbol Prob. Code Av. length
s0 0.06 0110 0.24
s1 0.23 10 0.46
s2 0.3 00 0.6
s3 0.15 010 0.45
s4 0.08 111 0.24
s5 0.06 0111 0.24
s6 0.06 1100 0.24
s7 0.06 1101 0.24

Overall average length: 2.71

• The redundancy of this encoding is:

R =
l −H
H

× 100 =
2.71− 2.6849

2.6849
≈ 1%

——oooo——

Q7.3 A quantised image is to be encoded using the symbols I ∈ {I0 · · · I11}. From
simulation studies it has been estimated that the relative frequencies for these symbols are
as follows: I0: 0.2; I1..I3: 0.1; I4..I7: 0.05; I8..I11: 0.075. Construct the Huffman tree for
these symbols and list the resultant code words in each case.
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Outline solution

• Using the minimum variance approach, but employing a more compact diagram for
convenience here. we have:

0.050.050.050.050.075 0.0750.0750.0750.1 0.10.10.2

I0 I1 I2 I3 I4 I5 I6 I7I8 I9 I10 I11

0.1 0.10.15 0.150.20.2 0.1

0.250.35 0.20.2

0.40.6

1.0

1

1

111
1

1

111

1

000
0

0

00
0

0 0

0

• Giving the following codewords:

Symbol Prob. Code
I0 0.2 000
I1 0.1 101
I2 0.1 110
I3 0.1 111
I4 0.05 0110
I5 0.05 0111
I6 0.05 1000
I7 0.05 1001
I8 0.075 0010
I9 0.075 0011
I10 0.075 0100
I11 0.075 0101

——oooo——

Q7.4 If the minimum variance set of Huffman codes for an alphabet, A, is as shown in
the table below, determine the efficiency of the corresponding Huffman encoder.
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Symbol Probability Huffman Code
a1 0.5 0
a2 0.25 10
a3 0.125 110
a4 0.0625 1110
a5 0.0625 1111

Outline solution

• The first order entropy for this set of symbol probabilities is:

H = −
∑

P log2 P = 1.875bits/symbol

• The average codeword length is:

l̄ =
∑

liPi = 1.875bits/symbol

• The efficiency is thus:

E =
H

l
= 100%

——oooo——

Q7.5 Consider the following 4×4 matrix, C, of DCT coefficients, produced from a block-
based image coder. Using zig zag scanning and run length coding (assume a {run, value}
model where value is the integer value of a non-zero coefficient and run is the number of
zeros preceding it), determine the transmitted bitstream after entropy coding.

C =


2 0 3 0
0 3 1 0
1 0 0 0
0 0 0 0


Use the following symbol to codeword mappings:

Symbol Code Symbol Code
{0,1} 00 {1,3} 0111
{0,2} 10 {2,1} 0110
{0,3} 110 {2,2} 0101
{1,1} 1111 {2,3} 01001
{1,2} 1110 EOB 01000
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Outline solution

• The {RUN,VALUE} symbols for C are (assuming the DC value is treated in the
same way as the AC values here):

(0, 2) (2, 1) (0, 3) (0, 3) (1, 1) (EOB)

• The corresponding codewords are:

(10) (0110) (110) (110) (1111) (01000)

——oooo——

Q7.6 Assuming that the DCT coefficient matrix and quantisation matrix in Q5.14 form
part of a JPEG baseline codec, derive the Huffman coded sequence that would be produced
by the codec for the AC coefficients.

Outline solution

• Considering the AC coefficients only, the corresponding code words are shown in the
following table:

Coeff run/size Huffman code Amplitude #bits
3 0/2 01 11 4
-3 0/2 01 11 4
-1 0/1 00 0 3
-2 0/2 01 01 4
-1 0/1 00 0 3
1 0/1 00 1 3
1 0/1 00 1 3
1 0/1 00 1 3
1 0/1 00 1 3
-1 0/1 00 0 3
1 2/1 11100 1 6
1 1/1 1100 1 5
-1 0/1 00 0 3
1 1/1 1100 1 5
1 4/1 111011 1 7
1 1/1 1100 1 5
1 10/1 111111010 1 10
1 2/1 11100 1 6

EOB 0/0 1010 - 4
Total AC bits 84



TUTORIAL PROBLEMS 53

• The coded bitstream is formed by the concatenation of the sequence of Huffman
codes and amplitude values from the above table, followed by the EOB code.

——oooo——

Q7.7 What is the Exp-Golomb code for the symbol index 13210?

Outline solution

• The codeword group index is given by:

ζi = blog2 (i+ 1)c = blog2 (133)c = 7

• And the residual is given by:

νi = 1 + i− 2ζi = 133− 27 = 5

• The Exp-Golomb code for the symbol index 13210is thus: 000000010000101

——oooo——

Q7.8 Show how the Exp-Golomb codeword 000010101 would be decoded and compute
the value of the corresponding symbol index. What is the corresponding Golomb-Rice code
for this index (assume m=4)?

Outline solution The Exp-Golomb codeword:

• To decode an Exp-Golomb codeword we count the number of leading zeros (ζi),
ignore the following 1 and then decode the index i from the next ζi bits. In this case
there are 4 leading zeros and the encoded residual νi = 01012 = 510.

• The index can then be calculated as:

i = νi − 1 + 2ζi = 5− 1 + 16 = 20

The corresponding Golomb-Rice code for 20:

• The group size for 20 is m=4.

• The remainder is given by:

νi = i−
⌊
i

m

⌋
m = 20−

⌊
20

4

⌋
4 = 0
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• The Golomb-Rice code for 20 is thus formed from a unary code specifying the group
number (in this case 5) concatenated with the 2 bit residual for the group, i.e.:
00000100.

——oooo——

Q7.9 Given the symbols from an alphabet, A = {a1, a2, a3, a4, a5} and their associated
probabilities of occurrence in the table below, determine the shortest arithmetic code which
represents the sequence: {a1, a1, a2}.

Symbol Probability
a1 0.5
a2 0.25
a3 0.125
a4 0.0625
a5 0.0625
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Outline solution

a3

a1

a2

a4

0.5 

(0.10)

0.25 

(0.01)

0.0 0.0

a5

u(3)

l(3)

• The lower and upper limits on the arithmetic coding interval are given by:

l (i) = l(i− 1) + (u(i− 1)− l(i− 1))Px (xi − 1)
u (i) = l(i− 1) + (u(i− 1)− l(i− 1))Px(xi)

• In this case we have:

l (3) = l(2) + (u(2)− l(2))Px (a1) = 0.12510 = 0.0012

u (3) = l(2) + (u(2)− l(2))Px(a2) = 0.187510 = 0.00112

• The shortest codeword that will represent this interval uniquely is thus 0.0012.

——oooo——

Q7.10 Given the following symbols and their associated probabilities of occurrence,
determine the binary arithmetic code which corresponds to the sequence: {a1, a2, a3,
a4}. Demonstrate how an arithmetic decoder, matched to the encoder, would decode the
bitstream: 010110111.

Symbol Probability
a1 0.5
a2 0.25
a3 0.125
a4(EOB) 0.125
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Outline solution

• The arithmetic encoder graph is given below:

a3

a1

a2

a4

0.5 

(0.10)

0.375 

(0.011)

0.359375 

(0.010111)

0.0 0.25 

(0.01)

0.34375 

(0.01011)

0.357421875 

(0.010110111)

• An appropriate codeword for the sequence {a1, a2, a3, a4} would be: 010110111.

• Decoding the bitstream: 010110111: The decoding process is summarised in the
following table. As each bit is loaded, it can be processed to further differentiate
symbols. When the desired number of symbols or an EOB symbol is received, the
decoding terminates.

Rx bit Interval Symbol
0 [0, 0.5)10 = [0, 0.1)2 a1

1 [0.25, 0.5)10 = [0.01, 0.10)2 -
0 [0.25, 0.375)10 = [0.010, 0.011)2 a2

1 [0.3125, 0.375)10 = [0.0101, 0.0110)2 -
1 [0.34375, 0.375)10 = [0.01011, 0.011)2 a3

0 [0.59375, 0.609375)10 = [0.100110, 0.100111)2 -
1 · · · -
1 · · · -
1 [0.357421875, 0.359375)10 = [0.010110111, 0.10111)2 a4

——oooo——

Q7.11 Given the following symbols and their associated probabilities of occurrence,
determine the arithmetic code which corresponds to the sequence: a1, a2, a3 (where a3
represents the EOB symbol).
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Symbol Probability
a1 0.375
a2 0.375
a3 0.125
a4 0.125

Show how the bitstream produced above would be decoded to produce the original input
symbols.

Repeat this question using Huffman encoding rather than arithmetic coding. Compare
your results in terms of coding efficiency.

Outline solution

a3

a1

a2

a4

0.375 0.28125

0.0 0.140625

u(3)

l(3)

l (3) = l(2) + (u(2)− l(2))Px (a2) = 0.2460937510 = 0.001111112

u (3) = l(2) + (u(2)− l(2))Px(a3) = 0.26367187510 = 0.0100001112

• The lower limit on the interval (00111111) could be used as the codeword. However
a shorter unique codeword exists: 01000002. This gives an average of 2.33 bits per
symbol for this simple example. However, in the specific case where the decoder
can deal with implicit trailing zeros (i.e. no codeword concatenation), and/or the
number of symbols transmitted is known (which would normally incur an additional
overhead), then the shortest unique codeword for this sequence could be 012.

• For the case of Huffman coding, a possible set of codewords (non-unique) are as
follows:



58 TUTORIAL PROBLEMS

Symbol Prob. Code
a1 0.375 1
a2 0.375 01
a3 0.125 001
a4 0.125 000

• For the sequence a1, a2, a3 the transmitted sequence would therefore be: 101001,
giving an efficiency of 2 bits per symbol.

——oooo——

Q7.12 Derive the arithmetic code word for the sequence s1, s1, s2, s2, s5, s4, s6, given a
symbol set with the following probabilities:

P (s0) = 0.065; P (s1) = 0.20; P (s2) = 0.10; P (s3) = 0.05;
P (s4) = 0.30; P (s5) = 0.20; P (s6) = 0.10 = EOB

Outline solution

• Follow a similar approach to previous solutions in this section. The first stage,
corresponding to the first transmitted symbol, is shown below.

s3

s1

s2

s4

0.25

0.05

s0

s5

s6

0.0

0.05

0.25

0.35
0.4

0.7

0.9

1.0

• Following this approach for the complete sequence yields a final arithmetic code
interval of [0.0713336, 0.0713360).

——oooo——



TUTORIAL PROBLEMS 59

Q7.13 Consider an alphabet, A = {a1, a2, a3, a4}, where P (a1) = 0.6; P (a2) = 0.2; P (a3) =
0.1; P (a4) = 0.1. Compute the sequence, S, of 3 symbols which corresponds to the arith-
metic code 0.58310.

Outline solution

• The arithmetic coding diagram for this problem is given below, where it can easily
be verified that the symbol sequence corresponding to the codeword 0.58310 is {a1,
a4, a2}.

a3

a1

a2

a4

0.6 0.54

0.0 0.48

0.534a1a3

a1a3a4

——oooo——

Q7.14 Given an alphabet of 2 symbols A={a,b}, where P (a) = 0.25; P (b) = 0.75, draw
a diagram showing coding and probability intervals for the associated arithmetic coder.
Derive a binary arithmetic code for the sequence S=baa.

Outline solution

• The coding and probability intervals for this problem are illustrated below:
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i=1

a

i=2

i=3

b

0

1

a

• The shortest codeword that uniquely represents the sequence baa can be seen to be:
01000.

——oooo——

Q7.15 Assuming the symbol probabilities in the table below, compute the arithmetic
codeword for the sequence s2 s2 s7 s8 . Use interval scaling in your solution.

Symbol Prob Symbol Prob
s1{0,1} 0.0625 s5{2,1} 0.0625
s2{0,2} 0.125 s6{2,2} 0.125
s3{1,1} 0.0625 s7{3,1} 0.25
s4{1,2} 0.0625 s8{EOB} 0.125

s9{Other} 0.125

Outline solution

• An outline of the aithmetic encoder design is shown below:



TUTORIAL PROBLEMS 61

s8

s7

s6

Px(1)=0.25

Px(2)=0.375

u(0)= 1

l(0)=0

i=0 i=1 i=2 i=3

u(1)=0.375

       0.75

     0.5

     1.0

u(2)=0.375

     0.7

     0.5

     1.0

   

l(1)=0.25

            0.5→0 

            0   →1

            0   →0

      l(2)=0.25

              0.5→0

              0   →1

              0   →0

s2 s2 s7 s8 

Px(3)=0.5

Px(4)=0.625

Px(0)=0

s9

s2

s5

s1

s4

s3

     l(3)=0

             0 →0

             0 →0

             

u(3)=0.25

       0.5 

       1.0

i=4

u(4)=0.625 

       0.25

     0.5

     1.0

     l(4)=0.5

             0 →1

             0 →0

             0 →0

• Therefore, using the lower limit as the codeword, the sequence has 11 bits: 01001000100

• Note: to guarantee uniqueness of code in general we require:

Length =

⌈
log2

(
1∏
pi

)⌉
+1 =

⌈
log2

(
1

(0.125× 0.125× 0.125× 0.25)

)⌉
+1 = 12bits

bits

——oooo——
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Chapter 8: Coding moving pictures: motion prediction

Q8.1 Implement the full search BBME algorithm on the 6×6 search window, S, using
the current-frame template, M, given below.

S =



1 5 4 9 6 1
6 1 3 8 5 1
5 7 1 3 4 1
2 4 1 7 6 1
2 4 1 7 8 1
1 1 1 1 1 1

 ; M =

[
7 7
7 7

]

Outline solution

• Consider for example, the candidate motion vector d=[0,0]. In this case the displaced
frame difference signal is given by:

E =

[
7 7
7 7

]
−
[

1 3
1 7

]
=

[
6 4
6 0

]

• Giving an SAD = 16. Similarly evaluating for all other [dx, dy] offsets, gives a mini-
mum SAD=2 for the motion vector d=[1,1].

——oooo——

Q8.2 Given the following reference window and current block, show how an N-Step
search algorithm would locate the best match (assume a SAD optimisation criterion).
Determine the motion vector for this block. Does this produce the same result as an
exhaustive search? 

1 4 3 2 1 2 3 2 2
0 1 2 0 2 3 0 2 1
0 2 0 0 1 2 0 1 0
0 0 0 0 1 1 1 1 0
1 2 1 1 4 4 0 0 1
0 3 2 3 0 1 2 2 3
0 3 3 1 0 1 1 2 2
0 4 2 3 0 2 1 2 1
0 1 2 1 2 3 2 2 0



 1 2 3
1 2 0
2 2 0



Outline solution

• The 2 step search algorithm would execute as shown in the following diagram:
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[-3,-3]

Motion Vector 

= [3,3]

[0,3]

[-3,3]

[3,-3]

[3,0] [3,3]

[0,-3]

[-3,0] Stage 1

Stage 2

• The optimum 1st stage vector is d=[2,2] with an SAD=7.The motion vector found
after the 2nd stage of the N step search is d=[3,3] with and SAD=2.

• In this case the solution is identical to that produced by an exhaustive search, but
using 17 search points rather than 49 search points.

——oooo——

Q8.3 Use bidirectional exhaustive search motion estimation, such as that employed in
MPEG-2, to produce the best match for the following current block and two reference
frames: 

1 2 3 4
1 2 2 3
1 1 2 2
2 2 2 1




1 1 3 4
1 1 0 3
1 1 2 0
2 1 0 1

 [ 1 2
1 2

]

Outline solution

• Assuming the conventional motion vector directions, the best forward prediction
match is given by d=[0, -1, -1] which gives an SAD=0. Note the first index indicates
the reference frame selected.

• The best match backwards is SAD=2, given by the following motion vectors: d=[1,
-1, -1]; d=[1, -1, 0]; d=[1, 0, 0]; d=[1, 0, 1].

• The best motion vector overall is given by the forward prediction, d=[0, -1, -1].

——oooo——
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Q8.4 Explain how the Two Dimensional Logarithmic (TDL) search method improves
the search speed of block-based motion estimation. Illustrate this method for the case of a
±6×±6 search window where the resultant motion vector is [2,5]. Quantify the savings for
this particular example over a full search. What is the main advantage and disadvantage
of this method?

Outline solution

• The TDL search reduces the number of motion vector candidates evaluated. The
search patterns used in this method are shown below and form the shape of a +
with 5 points, except for the final stage where a 9-point square pattern is checked.

• The largest pattern is initially located at the centre of the search grid, all 5 points
are evaluated and the one with the lowest BDM is selected as the centre of the next
search. The process is repeated until the minimum point remains at the centre, in
which case the search pattern radius is halved. This process continues until the radius
is equal to 1, when the 9 point square pattern is invoked.

[-7,-7]

[7,0]

[-7,7]

[7,-7]

[0,7] [7,7]

[0,-7]

[-7,0]

Stage 1

Stage 2

Stage 3

• The following illustrates the case of a ±6 × ±6 search window where the resultant
motion vector is [2,5].
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[-6,-6]

[6,0]

[-6,6]

[6,-6]

[0,6] [6,6]

[0,-6]

[-6,0]

Stage 1,2

Stage 3,4

Stage 5

d=[2,5]

• Comparing this with a full search, the FS would require 13x13=169 evaluations,
whereas the 2DLS requires only 21 evaluations.

• The main advantage of this approach is reduced complexity and the main disadvan-
tage of this method is that it can be susceptible to the influence of local minima in
the search space.

——oooo——

Q8.5 Implement a hexagonal search block matching algorithm on the search window,
S, using the current-frame template, M, as given below. Determine the motion vector for
this search. Assume that any search points where the hexagon goes outside of the reference
frame are invalid

S =



0 1 2 3 22 19 18 23
7 3 6 5 33 31 13 22
4 6 3 7 23 23 15 26
8 4 1 3 11 22 29 19
2 8 9 7 8 14 16 18
5 0 7 3 7 15 12 13
7 4 6 6 9 8 8 12
1 2 3 9 10 9 8 12


; M =

[
1 4
10 7

]

Outline solution

• The three steps in the hexagonal search for this problem are illustrated below, giving
a motion vector of d=[-1, 0].
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[-3,-3]

Motion Vector 

= [-1,0]

[0,3]

[-3,3]

[3,-3]

[3,0] [3,3]

[0,-3]

[-3,0] Stage 1

Stage 2

Stage 3

——oooo——

Q8.6 Given the following current block P and its set of three adjacent neighbours: A,
B, C and D with motion vectors as indicated, use motion vector prediction to initialise the
search for the best motion vector for this block.

dB=[1,1]

PdA=[1,2]

dD=[1,0]dC=[1,0]

Outline solution

• In this case a typical predictor for the motion vector would be:

d̂P = med (dA,dC ,dD) = [1, 0]

——oooo——

Q8.7 Motion vectors for six adjacent blocks in two partial rows of a frame are shown
below. Using the prediction scheme: d̂P = med(dA,dC ,dD), compute the predicted
motion vectors for each of these blocks together with their coding residuals. State any
assumptions that you make regarding the prediction of motion vectors for blocks located
at picture boundaries.
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[1,1] [1,2] [2,3]

[1,3] [2,3] [2,4] B

A

C

P

D

[3,4]

Outline solution

• Using the prediction scheme adopted for H.263 and H.264, which is based on the
following boundary rules:

Picture or GOB border

MV = Current motion vector

MVP = Median (MV1, MV2, MV3)

• The predicted motion vectors and residuals for each of the 6 blocks outlined (labelled
top left to bottom right) are given in the table below:

Block, P 1 2 3 4 5 6
d̂P [0,0] [1,1] [1,2] [1,1] [1,3] [2,3]
eP [1,1] [0,1] [1,1] [0,2] [1,0] [0,1]

——oooo——
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Chapter 9: The block-based hybrid video codec

Q9.1 The figure below shows a block diagram of a basic hybrid (block transform, motion
compensated) video coding system.

 

 

T  Q  

T
-1

 

Q
-1

 

Memory 

-
 

+  

Video   
in, A 

VLC  

Inter/intra 
select 

Video 
out 

MC  

B C D 

E 

F 

G 

H 

I  

ME  

J

Using the following assumptions and data at time n:

Image frame size: 12×12 pixels

Macroblock size: 4×4 pixels

Operating mode: inter frame

Motion estimation: Linear translational model (4×4 blocks)

Transform matrix: T = 1
2


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1



Quantisation matrix: Q =


1 1 4 4
1 2 4 4
4 4 4 4
4 4 4 4



Current input block: A =


2 2 0 0
2 2 0 0
0 0 0 0
0 0 0 0

; assume exact centre of frame.
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Reference memory: J =



0 0 2 2 2 1 1 1 1 1 1 1
4 10 4 7 4 7 4 4 4 3 2 1
8 4 7 6 7 1 1 0 0 0 0 0
6 4 6 5 4 1 1 0 0 0 0 0
3 2 10 6 8 0 0 0 0 0 0 0
0 4 14 4 4 0 0 0 0 0 0 0
0 0 5 6 6 6 6 0 0 7 0 0
0 0 0 12 0 0 0 3 4 2 3 4
0 0 0 0 0 0 0 4 4 5 8 0
7 7 8 9 0 0 0 0 6 7 0 0
0 0 0 10 3 0 0 0 0 7 0 0
0 0 2 2 2 0 0 0 0 0 0 0


Compute:

1. The current motion vector, H, at time n.

2. The motion compensated output, I, at time n.

3. The DFD for the current input frame, B.

4. The transformed and quantised DFD output, D.

Outline solution 1. Current motion vector:

• By inspection:
H = [1,−2]

2. Motion compensated output:

I =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



3. DFD for current input frame:

B = A− I =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



4. Transformed and quantised output:

• The transformed output is:
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C = TBTT =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



• and the quantised output (assuming 0.5 values rounded down) is:

D = C(Q) =


1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



——oooo——

Q9.2 If the encoded bitstream from Q9.1 is decoded by a compliant decoder, compute
the decoder output at time n that corresponds to the input block, A.

Outline solution

• The output of the decoder is given by the matrix G in the figure. Thus:

E = Q−1(D) =


1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



F = TTET =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



G = F+I =


2 2 0 0
2 2 0 0
0 0 0 0
0 0 0 0


• So in this case, a perfect reconstruction of the input block occurs.

——oooo——

Q9.3 Compute the transformed and quantised output for the current input block in Q9.1,
but this time for the case of intra frame coding.
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Outline solution

• Assuming no intra prediction is used:

C = TATT =
1

4


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1




2 2 0 0
2 2 0 0
0 0 0 0
0 0 0 0




1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 =


2 2 0 0
2 2 0 0
0 0 0 0
0 0 0 0



• Assuming the same quantisation matrix is used as for the inter frame case (Note: in
practice they are likely to be different):

D = C(Q) =


2 2 0 0
2 1 0 0
0 0 0 0
0 0 0 0



——oooo——

Q9.4 Using horizontal, vertical and DC modes only, produce the H.264/AVC intra
prediction for the highlighted 4×4 luminance block below:

1 2 3 4 2 3 5 4 7 8 9 5
2 4 4 6 7 8 4 6 4 4 3 2
4 3 5 6 3 3 3 4 4 4 3 3
4 4 5 6 3 3 3 4 4 4 3 3
1 1 4 6 2 3 6 3 x x x x
4 3 3 5 3 2 5 3 x x x x
2 2 3 5 3 3 4 4 x x x x
1 3 5 3 1 2 4 4 x x x x

Outline solution

6 3 3 3 4 4 4 3 3
6 2 3 6 3
5 3 2 5 3
5 3 3 4 4
3 1 2 4 4

• DC mode: Mean (3,3,3,4,6,5,5,3)=32/8=4; SAD=18.

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

• Vertical Mode: SAD=14.
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3 3 3 4
3 3 3 4
3 3 3 4
3 3 3 4

• Horizontal Mode: SAD=28.

6 6 6 6
5 5 5 5
5 5 5 5
3 3 3 3

• The lowest SAD is given by the vertical mode (SAD=14), so this would be selected
as the prediction for this block.

——oooo——

Q9.5 Following the full search result from Q8.1, refine the motion vector for this search
to ½ pixel accuracy using the 2- tap interpolation filter: (si + sj) /2 (where si and sj are
the horizontal or vertical whole-pixel locations adjacent to the selected ½ pixel location).

Outline solution

• From Q8.1, the search window and current frame block are repeated below:

S =



1 5 4 9 6 1
6 1 3 8 5 1
5 7 1 3 4 1
2 4 1 7 6 1
2 4 1 7 8 1
1 1 1 1 1 1

 ; M =

[
7 7
7 7

]

• Evaluating all integer [dx, dy] offsets, gave a minimum SAD=2 for the motion vector
d=[1,1].

• If we now interpolate the search window values to half pixel scale around the full
pixel optimum, applying the interpolation filter (si + sj) /2 to the available full pixel
values, we obtain the red values in the following matrix:

Sinterp = rnd



1 2 3 3.5 4 2.5 1
1 ∗ 5 ∗ 5 ∗ 1
1 4 7 6.5 6 3.5 1
1 ∗ 7 ∗ 7 ∗ 1
1 4 7 7.5 8 4.5 1
1 ∗ 4 ∗ 4.5 ∗ 1
1 1 1 1 1 1 1


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• The sub-pixel values marked as * must be interpolated based on the previously
interpolated values. It should be noted that this can be a source of drift between
encoder and decoder if a consistent approach to interpolation and rounding is not
adopted. Here we avoid drift by preserving full precision sub-pixel values (i.e. not
rounding) until all values have been computed. Rounding is then applied as the final
step. Alternatively rounding could be applied at intermediate steps so long as the
processes are identical at both encoder and decoder.

• Filling in the gaps in the above matrix yields the new values in blue below:

Sinterp = rnd



1 2 3 3.5 4 2.5 1
1 3 5 5 5 3 1
1 4 7 6.5 6 3.5 1
1 4 7 7 7 4 1
1 4 7 7.5 8 4.5 1
1 2.5 4 4.25 4.5 2.75 1
1 1 1 1 1 1 1


=



1 2 3 4 4 3 1
1 3 5 5 5 3 1
1 4 7 7 6 4 1
1 4 7 7 7 4 1
1 4 7 8 8 5 1
1 3 4 4 5 3 1
1 1 1 1 1 1 1



• Now applying a local refinement search at subpixel level, we see that none of the
subpixel offsets provides a lower SAD than the integer solution.

• Hence the resultant motion vector remains as d=[1,1].

——oooo——

Q9.6 Use the H.264/AVC sub-pixel interpolation filter to generate the half-pixel values
for the shaded locations in the following search window:

2 525352

3 657653

4 977765

1 636342

4 987665

3 888544

3 678654
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Outline solution

• The H.264/AVC sub-pixel interpolation filter is given by:

g =
(A− 5B + 20C + 20D − 5E + F )

32

A D FECB g

Integer pixel location Half pixel location

• Defining the local 1/2 pixel locations as follows:

765

854

865

b

g

ed

c

h

a

f

• We can compute these sub-pixel values using the above interpolation filter above.
For example:

b = rnd

(
(3− 5× 3 + 20× 6 + 20× 6− 5× 5 + 6)

32

)
= 7

d = rnd

(
3− 5× 4 + 20× 5 + 20× 6− 5× 8 + 7)

32

)
= 5

• Computing all intermediate values similarly gives:

a = 6; b = 7; c = 7; d = 5; e = 7; f = 4; g = 5; h = 7

——oooo——
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Q9.7 H.264 employs a 4×4 integer transform instead of the 8×8 DCT used in previous
coding standards. Prove that the 4 point integer approximation to the 1-D DCT transform
matrix, A, is given by:

A =


1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⊗Ef

where Ef is a 4×4 scaling matrix. State any assumptions made during your derivation.

Outline solution

• The 1-D 4×4 DCT is given by:

A =


1
2

1
2

1
2

1
2√

1
2 cos(π8 )

√
1
2 cos(3π

8 ) −
√

1
2 cos(3π

8 ) −
√

1
2 cos(π8 )

1
2 −1

2 −1
2

1
2√

1
2 cos(3π

8 ) −
√

1
2 cos(π8 )

√
1
2 cos(π8 ) −

√
1
2 cos(3π

8 )



=


a a a a
b c −c −b
a −a −a a
c −b b −c

 where :

a = 1
2

b =
√

1
2 cos(π8 )

c =
√

1
2 cos(3π

8 )

• Letting d = c
b , the integer version of the transform can be written as follows:

A =


1 1 1 1
1 d −d −1
1 −1 −1 1
d −1 1 −d

⊗

a a a a
b b b b
a a a a
b b b b



• where ⊗ represents a scalar multiplication. Since d ≈ 0.414, the next step is to
approximate d by a value of 0.5, to give:

A =


1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⊗

a a a a
b
2

b
2

b
2

b
2

a a a a
b
2

b
2

b
2

b
2



• Since for all row vectors, aia
T
j = 0, the basis vectors remain orthogonal. To make

the matrix orthonormal, we must ensure that ‖ai‖ = 1. Hence:
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a =
1

2
; b =

√
2

5
; d =

1

2

• Extending this separable transform to process 2-D signals gives:

C = ASAT

=


1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

 [S]


1 2 1 1
1 1 −1 −2
1 −1 −1 2
1 −2 1 −1

⊗E
(5)

• where:

E =


a2 ab

2 a2 ab
2

ab
2

b2

4
ab
2

b2

4

a2 ab
2 a2 ab

2
ab
2

b2

4
ab
2

b2

4


• Thus we can perform the forward and inverse transform operations as: S = ACATwith

the scalar multiplication by E absorbed into the quantisation process.

——oooo——



TUTORIAL PROBLEMS 77

Chapter 10: Measuring and managing picture quality

Q10.1 List the primary factors that should be controlled and recorded during subjective
video assessment trials.

Outline solution

• Important factors are listed in most standardised testing methodologies. These in-
clude:

– Display parameters: size, brightness, dynamic range, resolution.

– Viewing environment: room illumination and ambient lighting, viewing an-
gle, viewing distance:

– Coding schemes: A recording of the codecs employed and their parame-
ters/profiles/levels/configurations.

– Content description: the number of sequences used, sequence duration, se-
quence content, spatial resolution, temporal resolution, the bit-depth, and the
amount of spatial and temporal activity present in the sequences.

– Impairments: the number of impairment types and their descriptions. These
typically include compression artefacts obtained from the codecs under test and
also possible transmission losses. These should be selected to be consistent with
the range of channel conditions prevailing in the application areas of interest.

– Subjects: It is normal to record the number of observers used and their profile,
including gender, age, whether they are experts or non-experts and whether they
have been screened to ensure that they possess normal visual acuity (with or
without corrective lenses).

– Testing methodology and statistical analysis methods employed: For
example the duration of each test and a description of the testing methodology
used.

——oooo——

Q10.2 List the primary attributes that a good subjective database should possess or be
based on.

Outline solution

• A database of subjective opinions on video quality should possess a number of at-
tributes, including:

– A large number of test sequences in formats appropriate to modern transmis-
sion and storage requirements and with a range of content and spatio-temporal
activity types.

– A large number of subjects and hence opinions in order to provide robust statis-
tics.
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– Impairments that are typical of modern transmission scenarios including com-
pression artefacts from contemporary codecs at a range of bit rates and losses
typical of relevant communication channels.

– They should employ viewing conditions that are appropriate to modern displays
and environments.

– Metadata that provides a thorough description of the above conditions and
characteristics and of the testing methods adopted.

——oooo——

Q10.3 Given the following three consecutive frames, compute the temporal activity (TI)
for this sequence.

S1 =


1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

 ; S2 =


1 2 3 5
2 3 4 6
3 4 5 7
4 5 6 8

 ; S3 =


1 2 4 6
2 3 5 7
3 4 6 8
4 5 7 9



Outline solution
TI = max

∀z

{
σ
∀(x,y)

(Sz(x, y)− Sz−1(x, y))

}

• Let:

S
′
1 = S2 − S1 =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

 ; S
′
2 = S3−S2 =


0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1



S̄′
1 = 0.25; S̄′

2 = 0.5

σj =

√√√√ 1

N

N∑
i=1

(
s
′
j (i)− S̄′

j

)

• Hence:

σ
S
′
1

=

√
1

16

(
(0.75)2 × 4 + (0.25)2 × 12

)
=

√
3

4

σ
S
′
2

=

√
1

16
(0.5)2 × 16 =

1

2
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• Therefore:

TI = max
∀z

{
σ
∀(x,y)

(Sz(x, y)− Sz−1(x, y))

}
=

1

2

——oooo——

Q10.4 Consider the operation of a constant bit rate video transmission system at 25fps
with the following parameters:

Ro = 500kbps; B = 150kb; Fi = 100kb; GOP = 6 frames

If the pictures transmitted have the following sizes, compute the occupancy of the decoder
buffer over time and determine whether underflow or overflow occurs.

Frame no. Picture size (kbits)
1 20
2-6 10
7 40

8-12 10

Outline solution

• The ramp up time for the buffer is Fi/Ro = 0.2s and one frame period is 0.04s.
Plotting the buffer occupancy over the period of these initial pictures, we can observe
that the decoder buffer overflows when pictures 11 and 12 are transmitted.

Initial delay:

B
u

ff
er

 o
cc

u
p

an
cy

 (
F

)

Time

Fi=100

Fi/Ro=0.2s

GOP

25

50

75

100

125

150

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Buffer overflow

——oooo——
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Q10.5 The following Rate (bits) and Distortion (SSD) results are for three mode can-
didates when encoding a 64×64 Coding Tree Unit (CTU) of an inter predicted frame of
the BasketballDrill (843×480, 10 bit) sequence using an HEVC codec. Following the La-
grangian multiplier approach for Rate-Distortion Optimisation, evaluate which of the three
modes offers the best RD performance. Assume that the value of the Lagrange parameter
λ for mode selection is 232.

Mode Rate (bits) SSD
Skip 1 127368
Intra 358 136823
Inter 34 95984

Outline solution
According to the Lagrangian multiplier approach employed for mode selection in RDO,

the cost function is given as follows:

JMODE = D + λR,

The cost for three candidates modes can thus be calculated as:

JSKIP = DSKIP + λRSKIP = 127368 + 232× 1 = 127600

JINTRA = DINTRA + λRINTRA = 136823 + 232× 358 = 219879

JINTER = DINTER + λRINTER = 95984 + 232× 34 = 103872

Therefore the mode with the lowest cost value among these three is the Inter mode,
which offers the best RD performance.
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Chapter 11: Communicating pictures: delivery across net-
works

Q11.1 Using the Huffman codes in the following table, decode the following encoded
bitstream: 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0.

Symbol Probability Huffman Code
a1 0.5 0
a2 0.25 10
a3 0.125 110
a4 0.0625 1110
a5 0.0625 1111

Assuming codeword 110 represents an EOB signal, what would be the effect of a single
error in bit position 2 of the above sequence?

Outline solution

• For correct reception and decoding we have:

Rx. 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0
Output a1 a1 a2 a2 a1 a5 a4 a2 a1

• For the case of the corrupted sequence we have:

Rx. 0 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0
Output a1 a3 a2 a1 a5 a4 a2 a1

• So, 8 symbols are decoded instead of 9. An additional EOB signal is detected after
bit position 4 which means that an additional block is decoded. Codeword synchro-
nisation is regained, but the second block will be corrupted and, even if the following
EOB (not shown) is decoded correctly, block synchronisation will be lost.

——oooo——

Q11.2 An image encoder uses VLC and Huffman coding of transform coefficients, based
on a set of 4 symbols with the following mappings:

A↔ 0; B ↔ 10; C ↔ 110; D ↔ 111

Assuming that the sequence transmitted is ABCDAC, determine the received symbol se-
quences for the following scenarios:

1. An error occurring in the 3rd bit position.

2. An error occurring in the 1st bit position.

3. An error occurring in the 4th bit position.

4. An error occurring in the 8th bit position.

For each scenario, assuming that B represents the EOB symbol, comment on the impact
that the error has on the final state of the decoder and on the reconstructed transform
coefficients.
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Outline solution 1. Correct transmission is ABCDAC... i.e. 0-10-110-111-0-110...
An error occurring in the 3rd bit position:

• Received bits 0-111-10-111-0-110 would be interpreted as ADBDAC. The correct
EOB symbol would be missed so the first block would be corrupted. The second
block is also therefore corrupted but the decoder then receives a false EOB and then
resynchronises. so block level synchronisation is likely to be preserved.

2. An error occurring in the 1st bit position:

• Received bits 110-110-111-0-110 would be interpreted as CCDAC. The correct EOB
symbol would be again be missed because AB has been decoded as C. Hence the
first block would be corrupted. The second block is also therefore corrupted. The
decoder regains symbol level synchronisation but does not receive an EOB symbol
so block level synchronisation may be lost.

3. An error occurring in the 4th bit position:

• Received bits 0-10-0-10-111-0-110 would be interpreted as ABABDAC. The error
means that the first C is decoded as AB so an incorrect EOB signal is decoded.
Hence although the decoder regains symbol level synchronisation, an extra block is
decoded and block level synchronisation is lost.

4. An error occurring in the 8th bit position:

• Received bits 0-10-110-10-10-110 would be interpreted as ABCBBC. The first block
is decoded correctly but DA is decoded as BB, introducing two additional false EOB
symbols. Symbol synchronisation is regained but block level synchronisation is lost.

——oooo——

Q11.3 VLC codes for symbols {a, b, c} are: a = 0; b = 11; c = 101, where: P(a) =
0.5; P(b) = 0.25; P(c) = 0.25. Comment on any specific property these codewords exhibit
and on its benefits in a lossy transmission environment. Compare the efficiency of these
codewords with that of a conventional set of Huffman codes for the same alphabet.

Outline solution

• These codewords are symmetrical and therefore are capable of being decoded re-
versibly, offering increased error resilience. The average codeword length is 1.75 bits
per symbol.

• A set of conventional Huffman codes would be:

a = 1; b = 01; c = 00

• These have an average codeword length of 1.5 bits per symbol.

——oooo——
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Q11.4 The sequence of VLC codewords produced in Q7.5 is sent over a channel which
introduces a single error in the 15th bit transmitted. Comment on the impact that this
error has on the reconstructed transform coefficients and any subsequent blocks of data.

Outline solution

• Referring to Q7.5, the symbols produced are:

(0, 2) (2, 1) (0, 3) (0, 3) (1, 1) (EOB)

• The corresponding codewords are:

(10) (0110) (110) (110) (1111) (01000)

• An error in the 15th bit position modifies the sequence as follows:

(10) (0110) (110) (110) (1101) (01000)

• which would be decoded as:

(0, 2) (2, 1) (0, 3) (0, 3) (0, 3) (0, 2) (0, 2) (0, 1)

• An increased number of (incorrect) symbols are decoded, the EOB symbol is missed
and the errors will propagate to the subsequent block or blocks of data.

——oooo——

Q11.5 Use EREC to code four blocks of data with lengths: b1 = 6, b2 = 5; b3 = 2; b4 = 3.
Assuming that an error occurs in the middle of block 3 and that this causes the EOB code
to be missed for this block, state which blocks in the frame are corrupted and to what
extent.
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Outline solution

Stage 0

2

6

4

bi (bits)

Block i21 3 4

Stage 1

2

6

4

21 3 4 Block i

Stage 2

2

6

4

21 3 4 Block i

Stage 3

2

6

4

21 3 4 Block i

bi (bits)

bi (bits)bi (bits)

• An error in block 3 will propagate through that block due to loss of symbol synchro-
nisation. Block 3 will therefore be corrupted. Depending on the resynchronisation
characteristics prevailing, the EOB symbol for block 3 may be missed. If so, then
other data in slot 3 will also be corrupted, i.e. the higher frequency components of
block 2 and possibly block 1.

• Error propagation will terminate at the top of slot 3 which creates an implicit syn-
chronisation point, so no other blocks will be affected.

——oooo——

Q11.6 A video coder uses VLC and Huffman coding based on a set of 4 symbols with
probabilities 0.4, 0.3, 0.15 and 0.15. Calculate the average bit length of the resulting Huff-
man codewords. If this video coder is to employ reversible codes (RVLC) to improve error
resilience, suggest appropriate code words and calculate the bit rate overhead compared
to conventional Huffman coding.

Outline solution

• It is straightforward to obtain a set of Huffman codewords for these symbols. For
example:

a0 = 11; a1 = 10; a2 = 01; a3 = 00
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• The average codeword length is then 2 bits.

• If RVLC codewords were employed then these could,for example, be:

a0 = 00; a1 = 11; a2 = 101; a3 = 010

• The average length then becomes 2.3bits per symbol.

——oooo——

Q11.7 Assume that S1 and S2 below represent corresponding regions in 2 temporally
adjacent video frames. Due to transmission errors, the central 4×4 block (pixels marked
as ‘×’) in the received current frame, S

′
2 is lost. Assuming that the codec operates on the

basis of 2×2 macroblocks:

a) Perform temporal error concealment using frame copying to provide an estimate of the
lost block.
b) Perform motion compensated temporal error concealment, based on the BME measure.
Assume that the candidate motion vectors obtained from the four adjacent blocks are
either [0,1], [1,0] or [1,1].

S1 =



1 1 1 2 2 2 3 3
2 2 2 3 3 3 4 4
3 3 3 4 4 4 4 4
3 3 3 4 4 4 5 5
4 4 4 4 4 4 4 4
5 5 5 6 6 7 6 6
6 6 6 7 6 6 6 6
7 7 7 7 8 8 8 8


; S

′
2 =



2 2 3 3 3 4 4 3
3 3 4 4 4 4 5 5
3 3 4 4 4 4 4 4
4 4 5 × × 4 4 6
5 5 6 × × 6 6 6
7 6 7 6 6 6 6 7
6 7 7 6 6 8 8 8
9 9 9 7 8 7 8 8


Outline solution (a) Frame copying error concealment:

• In this case the co-located block in the previous fame is used for concealment; i.e.[
4 4
4 4

]
, giving a BME of 9.

(b) Motion compensated temporal error concealment:

• For motion vector candidate [0,1], BME=1.

• For motion vector candidate [1,0], BME=9.

• For motion vector candidate [1,1], BME=2.

• On this basis, the motion vector [0,1] would be used and the block selected for

concealment is:
[

4 4
6 6

]

——oooo——
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Q11.8 Assuming again that the central 2×2 block (pixels marked as ‘x’) in the re-
ceived current frame, S

′
2 (above) is lost, calculate the missing elements using spatial error

concealment.

Outline solution

• The interpolation is performed using the following equation:

s (x, y) =
dLsR(x, y) + dRsL(x, y) + dT sB(x, y) + dBsT (x, y)

dL + dR + dT + dB

• In this case this gives for the top left missing value (assume 0.5 is rounded up):

s (0, 0) = rnd

(
1× 4 + 2× 5 + 1× 6 + 2× 4

6

)
= 5

• Similarly, calculating for the other missing values we have:

S =

[
5 5
6 6

]

——oooo——

Q11.9 A block-based image coder generates a slice comprising 5 DCT blocks of data as
follows:

Block Number Block Data
1 01011011101111
2 10111001011101111
3 1100101111
4 101101101111
5 0001111

where the symbols and entropy codes used to generate this data are as follows (assume E
is the End of Block Symbol):

Symbol Huffman Code
A 0
B 10
C 110
D 1110
E 1111

Code this data using Error Resilient Entropy Coding (EREC). Choose an appropriate
EREC frame size and offset sequence for this slice and show all the encoding stages of the
algorithm.
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Outline solution

• The block lengths are: l (b1) = 14; l (b2) = 17; l (b3) = 10; l (b4) = 12 l (b5) = 7

• The slot length should therefore be:
⌈

1
N

∑
l (bi)

⌉
= 12

• The slot packing solution thus proceeds as follows:

Stage 0

4

12

8

bi (bits)

Block i21 3 4

Stage 1

Stage 3 Stage 4

6

16
14

10

2

18

5

4

12

8

bi (bits)

Block i21 3 4

6

16
14

10

2

18

5

4

12

8

bi (bits)

Block i21 3 4

6

16
14

10

2

18

5

4

12

8

bi (bits)

Block i21 4

6

16
14

10

2

18

——oooo——

Q11.10 Perform EREC decoding on the bitstream generated from Q11.9.
If the slice data given in the above question is corrupted during transmission such that the
values of the last 2 bits in each of block 2 and block 3 are complemented, how many blocks
are corrupted after EREC decoding. Compute how many blocks would contain errors if
the slice were transmitted as a conventional stream of entropy codewords without EREC.

Outline solution

• EREC decoding proceeds according to the table below (X=no action, Pi=partial
decode from slot i, Ci=complete decode from slot i (EOB detected):
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Stage Offset bk1 bk2 bk3 bk4 bk5
0 0 X X C3 C4 C5
1 1 X P3
2 2 X X
3 3 X C5
4 4 C5

• The stages are described as follows:

– At stage 0, we start decoding from the base of the 1st block and proceed until
the end of the slot is reached or an EOB symbol is decoded. In the case of block
1, we reach the end of the slot with no EOB detected. We do the same for all
other slots. Hence blocks 3, 4 and 5 are all fully decoded at stage 0.

– At stage 1 we search (for all incomplete blocks) for additional data at an offset
of 1. For example, in the case of block 2 we search slot 3: we detect additional
data beyond the EOB for block 3, but still no EOB is detected for block 2 so it
remains incomplete.

– At stage 3 block 2 is fully decoded from slot 5 at an offset of 3.

– Finally at stage 4, block 1 is fully decoded from slot 5 at an offset of 4.

• If the last 2 bits in each of block 2 and block 3 are complemented, then the EOB
symbol E=1111 for blocks 2 and 3 will be interpreted as C=110 followed by A=0.
Hence the correct EOB signals for these blocks will be missed. Hence, during EREC
decoding:

– At stage 0 blocks 4 and 5 will be correctly decoded.

– At stage 1 no further decoding can take place

– At stage 2, the incomplete block 3 incorrectly decodes the remainder of slot 5,
introducing errors in the high frequency components of block 3.

– There is then no other data to decode, so blocks 1 and 2 remain incomplete.
Their low frequency components are however intact, so if all the remaining
coefficients are replaced with zeros, then errors will only occur in their higher
frequency components.

– In summary, no loss of block synchronisation occurs but 3 blocks exhibit some
errors in their high frequency coefficients.

Stage Offset bk1 bk2 bk3 bk4 bk5
0 0 X X X C4 C5
1 1 X X X
2 2 X X C5
3 3 X X
4 4 X X

• If the slice were transmitted as a conventional stream of entropy codewords without
EREC, the following symbols would be decoded.
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bk1 bk2 bk3 bk4 bk5
ABCDE BDABDCA CABCA BCCE AAAE
Correct EOB missed EOB missed EOB detected

but blocks 2,3
and 4 decoded as
a single block

Correct but
spatially shifted
by two block
positions

——oooo——
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Chapter 12: Video coding standards

Q12.1 Assuming a ClF format luminance-only H.261 sequence with synchronisation
codewords at the end of each GOB, calculate the (likely) percentage of corrupted blocks in
a frame if bit errors occur in block 1 of macroblock 7 in GOB 2 and block 1 of macroblock
30 of GOB 10.

Outline solution

(Y only) 1

43

2

1

43

2

5

87

6

9

1211

10

1

412

2 3

1514

4 5

1716

6 7

1918

8 9

2120

10

24

11

23

22

2625 2827 3029 3231 33

Macroblock format:

Arrangement of GOBs 
in a CIF frame:

GOB structure:

• Assuming that synchronisation codewords are employed at the end of each GOB.

– The error in block 1 of MB7 of GOB2: Assuming that the error propagates to
the end of GOB2 (worst case), this will affect 27 macroblocks, or 108 blocks.

– The error in block 1 of MB30 of GOB10: Assuming that the error propagates
to the end of GOB10, this will affect 4 macroblocks or 16 blocks.

– The total likely percentage of corrupted blocks is therefore:

124

12× 33× 4
× 100 = 8%

——oooo——

Q12.2 What parts of a video codec are normally subject to standardisation in term of
compliance testing? Why is this?
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Outline solution

• Video coding standards conventionally define the bitstream format and syntax and
the decoding process, not (for the most part) the encoding process. This is illustrated
in the figure below, where the dashed box indicates the normative aspects of the
standard. A standard-compliant encoder is thus one that produces a compliant
bitstream and a standard-compliant decoder is one that can decode a compliant
bitstream. Standard compliance of an encoder thus provides no guarantee of quality.

• This approach supports straightforward compliance testing while enabling manufac-
turers to differentiate their products through innovative low complexity, robust and
efficient coding solutions.

Pre-processing

Post-processing Decoding

Encoding
Source

Destination

——oooo——

Q12.3 Discuss the concepts of profiles and levels in MPEG-2 indicating how these have
enabled a family of compatible algorithms covering a range of applications and bitrates to
be defined.

Outline solution

• To match performance against decoder capability or capacity, MPEG-2 introduced
an extensive range of profiles and levels. A profile is a defined subset of the entire
bitstream syntax and profiles are further partitioned into levels. Each level specifies
a range of allowable values for the parameters in the bitstream.

• MPEG-2 supports six profiles – Simple, Main, SNR, Spatial, High 4:2:2 and Multi-
view. Provisions for scalability are included in the SNR, Spatial and High profiles
whereas the Simple Profile and Main Profile allow only single-layer coding. It also
offers four possible levels – Low, Main, High1440 and High - in each profile. The
parameters for the Main Level approximately correspond to normal TV resolution,
the Low Level corresponds to CIF resolution, and the values for High1440 and High
correspond to HDTV resolution.

——oooo——
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Q12.4 Compare the primary features of H.264/AVC and MPEG-2 and highlight those
features that have enabled H.264 to approximately halve the bitrate of MPEG-2 for equiv-
alent picture quality.

Outline solution

• Some of the key differentiating features between these two codecs are given in the
following table.

Codec feature MPEG-4/AVC MPEG-2
Formats supported QCIF to UHDTV (4k). SDTV to HDTV
Frame types I, P, B, SP, SI, Hierarchical B

frames. (MB skip mode). B
frames can be used as a
reference.

I, P, B (MB skip mode).

DC coding Hadamard transform. Differential
Inter-coding transform Block 8×8 or 4×4 integer

transform.
Block 8×8 DCT.

Intra-prediction Multi-direction, multi-pattern
9 directions.

DC only.

Motion compensation Quarter pixel, unrestricted
vectors, multiple reference
frames.

Half pixel, maximum of 1
past reference for P frames
and 2 references for B frames.

ME block size 16×16, 16×8, 8×16, 8×8,
8×4, 4×8, 4×4

16×16

Entropy coding CAVLC or CABAC Conventional VLC.
Loop filter In loop non-linear deblocking

filter.
None.

Error resilience Slices, FMO, SI, SP frames,
multiple reference frames.
Network independence.

Basic slices. External error
resilience features and
channel coding specified in
DVB standards.

——oooo——

Q12.5 Compare the features of H.265/HEVC and H.264/AVC and highlight those fea-
tures that have enabled HEVC to approximately halve the bitrate of H.264 for equivalent
picture quality.

Outline solution

• Some of the key differentiating features between these two codecs are given in the
following table.
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Codec feature MPEG-4/AVC HEVC
Formats supported QCIF to UHDTV (4k)

typically to 60fps.
Formats from QVGA to
UHDTV (8k) up to 300fps.

Transform Block 8×8 or 4×4 integer
transform

4×4, 8×8, 16×16 and 32×32.
Transform basis functions are
derived from the DCT.
Smaller transform sizes are
obtained by sub-sampling the
larger 32×32 matrix. In the
case of intra coded 4×4
residuals, an alternative
integer transform is used -
derived from the DST.

Intra-prediction Multi-direction- 9 modes,
multi-pattern

Multi-direction- 35 modes,
multi-pattern

Motion compensation Quarter pixel, unrestricted
vectors, multiple reference
frames. 6 tap interpolation
filter for half pixel and
bilinear for quarter pixel.

Quarter pixel, unrestricted
vectors, multiple reference
frames. Half-pixel
interpolation uses an 8 tap
filter and a 7 tap filter is used
for quarter-sample
interpolation. These are
applied separably and (unlike
H.264) without intermediate
rounding.

ME block size 16×16, 16×8, 8×16, 8×8,
8×4, 4×8, 4×4

Flexible block partitioning
based on CTU structure with
maximum size 64×64 samples

MV prediction MV prediction based on local
MV rank order statistics.

An Advanced Motion Vector
Prediction mode (AMVP) is
used to derive likely motion
vector candidates. Improved
skip modes and MV merging
capabilities between adjacent
blocks.

Entropy coding CAVLC or CABAC CABAC only with improved
context modelling.

Loop filter In loop non-linear deblocking
filter.

Loop filter but with added
sample offset adjustment to
reduce banding and ringing
artefacts.

Architecture — Increased exploitation of
parallelisation for efficient
hardware implementation.

——oooo——
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Q12.6 Why has H.265/HEVC increased its maximum block size to 64×64 pixels and
VVC increased this further to 128×128?

Outline solution

• HEVC has increased its maximum block size to 64 by 64 pixels in order to cope
better with the spatio-temporal characteristics of new formats such as UHDTV with
4K and 8K spatial sampling at frame rates up to 120Hz.

• VVC has further increased this to support further RD performance gains but to save
complexity - has limited ghe number of non zero coefficients in its transform matrix.

• The block partitioning approach, using quad-trees, also provides more flexibility in
representing complex spatio-temporal patterns.

——oooo——

Q12.7 Compare the features of H.265/HEVC and H.266/VVC and highlight those fea-
tures that have enabled HEVC to approximately halve the bitrate of H.264 for equivalent
picture quality.

Outline solution
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Codec feature HEVC VVC
Formats supported Formats from SQCIF to

UHDTV (8k) up to 300fps.
Format from SQCIF to
UHDTV (8k) up to 300fps

Transform 4×4, 8×8, 16×16 and 32×32.
Transform basis functions are
derived from the DCT.
Smaller transform sizes are
obtained by sub-sampling the
larger 32×32 matrix. In the
case of intra coded 4×4
residuals, an alternative
integer transform is used -
derived from the DST.

Multiple primary transform
selections are adopted with
new types of DCT and DST.

Intra-prediction Multi-direction- 35 modes,
multi-pattern

65 directional intra modes,
plus surface fitting and DC
prediction. Mode dependent
intra smoothing.
Multi-reference line intra
prediction

Motion compensation Quarter pixel, unrestricted
vectors, multiple reference
frames. Half-pixel
interpolation uses an 8 tap
filter and a 7 tap filter is used
for quarter-sample
interpolation. These are
applied separably and (unlike
H.264) without intermediate
rounding.

1
16 pixel motion vector
precision

ME block size Flexible block partitioning
based on CTU structure with
maximum size 64×64 samples

Maximum CTU size for luma
block is 128×128. A quadtree
structure with nested
multi-type partitions using
binary and ternary
segmentation

MV prediction An Advanced Motion Vector
Prediction mode (AMVP) is
used to derive likely motion
vector candidates. Improved
skip modes and MV merging
capabilities between adjacent
blocks.

Affine motion model based
inter prediction. Combined
intra and inter prediction.
Adaptive motion vector
resolution

Entropy coding CABAC only with improved
context modelling.

Dependent quantization with
max QP increased to 63.
CABAC engine with an
adaptive double probability
update model.

Loop filter Loop filter but with added
sample offset adjustment to
reduce banding and ringing
artefacts.

New adaptive loop filter.
Luma mapping with chroma
scaling.

Architecture Increased exploitation of
parallelisation for efficient
hardware implementation.
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Chapter 13: Communicating pictures: the future

Q13.1 What are the primary challenges and demands for video compression in the
future?

Outline solution

• The primary demands relate to the need to communicate increasing amounts of video
content while satisfying increased quality demand from users.

• This is especially the case with emerging, more immersive formats with higher spatial
resolution, higher temporal resolution, higher dynamic range and multiple views.

——oooo——

Q13.2 Consider the case of an 8K resolution video signal in 4:2:2 format with 14 bits
dynamic range and a frame rate of 300fps. Calculate the total bit rate needed for this
video.

Outline solution

• An 8k resolution is conventionally interpreted as 7680×4320 pixels. Assuming a
frame rate of 300fps and a dynamic range of 14 bits, in 4:2:2 format (2 samples per
pixel), we can calculate the (uncompressed) throughput requirement as follows:

7680× 4320× 2× 14× 300 = 2.786918× 1011 ≈ 279Gbps

——oooo——

Q13.3 How might video compression algorithms develop in the future in order to cope
with the demands of formats such as that described in Q13.2?

Outline solution

• Perception-based compression methods such as Parametric Video Coding (Sec 13.4)
use an analysis/synthesis framework rather than the conventional energy minimisa-
tion approach. These have demonstrated the potential for significant savings com-
pared to block-based methods.

• Increased exploitation of context can provide a basis for effectively exploiting a priori
knowledge about the spatio-temporal characteristics of a scene.

——oooo——


